Examlet 1, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

Claim: There is a relish r such that r is orange but r is not spicy.

Solution: For every relish r, r is not orange or r is spicy.

3. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by G(x) = x - 5 and $H(x) = \sqrt{x+1}$. Compute the value of H(H(G(13))), showing your work.

Solution:
$$G(13) = 8$$
. So $H(G(13)) = \sqrt{9} = 3$. So $H(H(G(13))) = \sqrt{4} = 2$.

2. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$(p \wedge q) \vee q =$$
 Solution: q

р	q	$p \wedge q$	$(p \land q) \lor q$	
Т	Т	Т	Т	
Т	F	F	F	
F	Т	F	Т	
F	F	F	F	

Examlet 1, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

12

1 2

4 5

3

State the negation and the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

11

Claim: For every cat c, if c is not fierce or c wears a collar, then c is a pet.

1. (5 points) Negation

Solution: There exists a cat c that is either not fierce or wears a collar and is not a pet.

2. (5 points) Contrapositive

Solution: For every cat c, if c is not a pet, then c is fierce and c does not wear a collar.

3. (5 points) Solve $5x + m = \frac{n}{5}$ for x, expressing your answer as a single fraction. Show your work.

Solution:

$$5x + m = \frac{n}{5}$$

$$5x = \frac{n}{5} - m$$

$$x = \frac{n}{25} - \frac{m}{5} = \frac{n - 5m}{25}$$

CS 173, Spring 2015 Examlet 1, Part A

NETID:

FIRST:

LAST:

Discussion: Me

Monday

10

9

12

1 2

3

4 5

State the negation and the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

11

Claim: For every tiger k, if k is orange, then k is large and k is not friendly.

1. (5 points) Negation

Solution: There exists an orange tiger k that is not large or is friendly.

2. (5 points) Contrapositive

Solution: For every tiger k, if k is not large or k is friendly, then k is not orange.

3. (5 points) Suppose that F and G are functions whose inputs and outputs are positive real numbers, defined by $F(x) = x^2 + 14x$ and $G(x) = \sqrt{x+49}$. Compute the value of G(F(p)). Simplify your answer and show your work.

Solution: Notice that p is given to be positive, so p + 7 is also positive.

$$G(F(p)) = G(p^2 + 14p) = \sqrt{(p^2 + 14p) + 49} = \sqrt{(p+7)^2} = p+7$$

Examlet 1, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

State the negation and the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

Claim: For every dragon d, if d is green, then d is not large or d is fat.

1. (5 points) Negation

Solution: There is a dragon d such that d is green but/and d is large and d is not fat.

2. (5 points) Contrapositive

Solution: For every dragon d, if d is large and d is not fat, then d is not green.

3. (5 points) Solve $\frac{3}{x} + m = \frac{3}{p}$ for x, expressing your answer as a single fraction. Show your work.

Solution: Multiplying by xp gives you 3p + mxp = 3x.

So
$$3x - mxp = 3p$$
.

So
$$x(3 - mp) = 3p$$
.

So
$$x = \frac{3p}{3-mp}$$
.

CS 173, Spring 2015 Examlet 1, Part A	NETID:		
FIRST:		LAST:	

State the negation and the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

11

12

1

2

3

4

5

Claim: For every dinosaur d, if d is huge, then d is not a juvenile and d is a sauropod.

1. (5 points) Negation

Discussion:

Monday

9

10

Solution: There is a dinosaur d such that d is huge but d is a juvenile or d is not a sauropod.

2. (5 points) Contrapositive

Solution: For every dinosaur d, if d is a juvenile or d is not a sauropod, then d is not huge.

3. (5 points) Suppose that k is a positive integer, x is a positive real number, and $\frac{1}{k} = x + \frac{1}{6}$. What are the possible values for k? (Hint: k is an INTEGER.) Briefly explain or show work.

Solution: Observe that we can rearrange the equation as follows:

Since x is positive, $\frac{1}{k} = x + \frac{1}{6}$ implies that $\frac{1}{k} > \frac{1}{6}$. So k must be smaller than 6. But we were told that k was a positive integer. The only positive integers smaller than 6 are 1, 2, 3, 4, and 5.

Examlet 1, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

State the negation and the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

Claim: For every dragon d, if d is green, then d is not large or d is fat.

1. (5 points) Negation

Solution: There is a dragon d such that d is green but d is large and d is not fat.

2. (5 points) Contrapositive

Solution: For all dragons d, if d is large and d is not fat, then d is not green.

3. (5 points) Solve $16p^2 - 81 = 0$ for p. Show your work.

Solution: $16p^2 - 81 = (4p - 9)(4p + 9)$

(4p-9)(4p+9) = 0 when either 4p = 9 or 4p = -9. That is $p = \pm \frac{9}{4}$