Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(a, b) \in \mathbb{R}^2 : a = 3 - b^2\}$

 $B = \{(x,y) \in \mathbb{R}^2 \ : \ |x| \ge 1 \text{ or } |y| \ge 1\}$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

Solution: Suppose that (a,b) is an element of A. Then, by the definition of A, $(a,b) \in \mathbb{R}^2$ and $a=3-b^2$.

Consider two cases, based on the magnitude of b:

Case 1: $|b| \ge 1$. Then (a, b) is an element of B. (Because it satisfies one of the two conditions in the OR.)

Case 2: |b| < 1. Then $b^2 < 1$. Then $a = 3 - b^2 > 3 - 1 = 2$. So $|a| \ge 1$, which means that (a, b) is an element of B.

So (a, b) is an element of B in both cases, which is what we needed to show.

Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(x, y) \in \mathbb{Z}^2 \mid 2xy + 6y - 5x - 15 \ge 0\}$

 $B = \{(a, b) \in \mathbb{Z}^2 \mid a \ge 0\}$

 $C = \{(p,q) \in \mathbb{Z}^2 \mid q \ge 0\}$

Prove that $(A \cap B) \subseteq C$.

Solution: Suppose that (x, y) is an element of $(A \cap B)$. This means that (x, y) is an element of A and (x, y) is an element of B. So $2xy + 6y - 5x - 15 \ge 0$ and $x \ge 0$, by the definitions of A and B.

Notice that 2xy + 6y - 5x - 15 = (x+3)(2y-5). So $(x+3)(2y-5) \ge 0$. We know that x+3 is positive because $x \ge 0$. So we must have $(2y-5) \ge 0$.

Now, if $(2y-5) \ge 0$, then $2y \ge 5$. So $y \ge \frac{5}{2}$. So $y \ge 0$. This means that (x,y) is an element of C which is what we needed to show.

CS 173, Spring 2015 Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$

 $B = \{ (p,q) \in \mathbb{R}^2 : q \ge p^2 - 5 \}$

 $C = \{(a,b) \in \mathbb{R}^2 \ : \ |a| \leq 3\} \ (\text{corrected during exam from} \ C = \{(a,b) \in \mathbb{R}^2 \ : \ |x| \leq 3\})$

Prove that $A \cap B \subseteq C$.

Solution: It turns out that $A \subseteq C$, so your proof doesn't actually have to involve properties of the set B. [But it's ok if you did them.]

Proof: Let $(x,y) \in A \cap B$. Then, $(x,y) \in A$ and $(x,y) \in B$. So, from the definition of A, we know that $(x,y) \in \mathbb{R}^2$, $x^2 + y^2 \leq 1$.

Notice that x^2 must be non-negative, so $x^2 + y^2 \le 1$ implies that $x^2 \le 1$. Therefore $|x| \le 1$. Therefore $|x| \le 3$, which is what we needed to show.

Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

$$A = \{(x, y) \in \mathbb{R}^2 \mid x = |3y + 5| \}$$

$$B=\{(p,q)\in\mathbb{Z}^2\ |\ 2p+q\equiv 3\ (\mathrm{mod}\ 7)\ \}$$

Prove that $A \cap \mathbb{Z}^2 \subseteq B$.

Use the following definition of congruence mod k: if s, t, k are integers, k positive, then $s \equiv t \pmod{k}$ if and only if s = t + nk for some integer n.

Solution: Let (x,y) be an element of $A \cap \mathbb{Z}^2$. Then (x,y) is an element of A and, also, both x and y are integers.

By the definition of Z, $x = \lfloor 3y + 5 \rfloor$. Since y is an integer, 3y + 5 must also be an integer. So $\lfloor 3y + 5 \rfloor = 3y + 5$. Therefore, x = 3y + 5.

Now, consider 2x + y.

$$2x + y = 2(3y + 5) + y = 7y + 10 = 7(y + 1) + 3$$

y+1 is an integer, since y is an integer. So this means that $2x+y\equiv 3\pmod 7$. Therefore, (x,y) is an element of B, which is what we needed to show.

Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(a, b) \in \mathbb{R}^2 : b = a^2 - 2\}$

 $B = \{(x, y) \in \mathbb{R}^2 : \lfloor x \rfloor = 4\}$

 $C = \{(p,q) \in \mathbb{R}^2 : 2p \le q\}$

Prove that $A \cap B \subseteq \mathbb{C}$.

Solution: Let $(p,q) \in \mathbb{R}^2$ and suppose $(p,q) \in A \cap B$. Then $(p,q) \in A$ and $(p,q) \in B$. By the definitions of A and B, this means that $q = p^2 - 2$ and |p| = 4.

Since $\lfloor p \rfloor = 4$, we know that $4 \leq p < 5$.

Since p < 5, 2p < 10.

Since $p \ge 4$, $q = p^2 - 2 \ge 16 - 2 = 14$.

Therefore $2p < 10 < 14 \le q$. Since $2p \le q$, $(p,q) \in C$, which is what we needed to show.

Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(x, y) \in \mathbb{R}^2 : 0.3 \le xy \le 10.5\}$

 $B = \{(a, b) \in \mathbb{Z}^2 : a > 4\}$

 $C = \{(p,q) \in \mathbb{Z}^2 : q \le 2\}$

Prove that $A \cap B \subseteq \mathbb{C}$.

Solution: Let $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. By the definitions of A and B, this means that $(x,y) \in mathbb Z^2$, so x and y are integers. Also $0.3 \le xy \le 10.5$ and x > 4.

Since x and y are integers, $0.3 \le xy \le 10.5$ implies that $1 \le xy \le 10$. Also, since x is an integer, x > 4 implies that $x \ge 5$.

Since $x \ge 5$ and y is positive, $xy \ge 5y$. Since we also know that $xy \le 10$, we have $10 \ge 5y$. So $y \le 2$

Since (x, y) is a pair of integers with $y \leq 2$, (x, y) is an element of C by the definition of the set C. This is what we needed to prove.