CS 173, Spring 2015

Examlet 4, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Define the relation \sim on \mathbb{Z} by

 $x \sim y$ if and only if $5 \mid (3x + 7y)$

Working directly from the definition of divides, prove that \sim is transitive.

Solution: Let x, y, and z be integers. Suppose that $x \sim y$ and $y \sim z$.

By the definition of \sim , $5 \mid (3x+7y)$ and $5 \mid (3y+7z)$. So 3x+7y=5m and 3y+7z=5n, for some integers m and n.

Adding these two equations together, we get 3x+7y+3y+7z=5m+5n. So 3x+10y+7z=5(m+n). So 3x+7z=5(m+n-2y).

m+n-2y is an integer, since m, n and y are integers. So this means that $5 \mid 3x+7z$ and therefore $x \sim z$, which is what we needed to show.

CS 173, Spring 2015

Examlet 4, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

$$(x,y)T(p,q)$$
 if and only if $(xy)(p+q)=(pq)(x+y)$

Prove that T is transitive.

Solution: Let (a, b), (p, q), and (m, n) be elements of A. Suppose that (a, b)T(p, q) and (p, q)T(m, n). By the definition of T, this means that (xy)(p+q)=(pq)(x+y) and (pq)(m+n)=(mn)(p+q)

Since m+n is positive, we can divide both sides by it, to get (pq) = (mn)(p+q)/(m+n). Substituting this into the first equation, we get

$$(xy)(p+q) = (mn)(p+q)/(m+n) \times (x+y)$$

Multiplying both sides by (m+n), we get

$$(xy)(p+q)(m+n) = (mn)(p+q)(x+y)$$

Since (p+q) is positive, we can cancel it from both sides to get

$$(xy)(m+n) = (mn)(x+y)$$

By the definition of T, this means that (a,b)T(m,n), which is what we needed to show.

CS 173, Spring 2015
Examlet 4, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Recall how to multiply a real number α by a 2D point $(x,y) \in \mathbb{R}^2$: $\alpha(x,y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists a real number $\alpha\geq 1$ such that $(x,y)=\alpha(p,q)$.

Prove that \gg is antisymmetric.

Solution: Let (x,y) and (p,q) be elements of A. Suppose that $(x,y) \gg (p,q)$ and $(p,q) \gg (x,y)$.

By the definition of \gg , there are real numbers $\alpha \geq 1$ and $\beta \geq 1$ such that $(x,y) = \alpha(p,q)$ and $(p,q) = \beta(a,b)$.

Substituting the second equation into the first, we get $(x,y) = \alpha\beta(x,y)$. This means that $\alpha\beta = 1$. Since $\alpha \ge 1$ and $\beta \ge 1$, this implies that $\alpha = \beta = 1$. So therefore (x,y) = (p,q), which is what we needed to show.

CS 173, Spring 2015

Examlet 4, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if $x \le p$ and $xy \le pq$

Prove that T is antisymmetric.

Solution: Let (x,y) and (p,q) be elements of A. Suppose that (x,y)T(p,q) and (p,q)T(x,y).

By the definition of T, (x,y)T(p,q) implies that $x \leq p$ and $xy \leq pq$.

Similarly (p,q)T(x,y) implies that that $p \leq x$ and $pq \leq xy$.

Since $x \le p$ and $p \le x$, x = p. Since $xy \le pq$ and $pq \le xy$, xy = pq.

Notice that x and o are positive, by the definition of A. So x = p and xy = pq implies that y = q.

We now know that x = p and y = q. So therefore (x, y) = (p, q), which is what we needed to show.

CS 173, Spring 2015 Examlet 4, Part A

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists an integer $n\geq 1$ such that (x,y)=(np,nq).

Prove that \gg is transitive.

Solution: Let (x, y), (p, q) and (a, b) be pairs of natural numbers and suppose that $(x, y) \gg (p, q)$ and $(p, q) \gg (a, b)$.

By the definition of \gg , (x,y)=(np,nq) and (p,q)=m(a,b), for some positive integers m and n. So $x=np,\ y=nq,\ p=ma$ and q=mb.

Combining these equations, we get x = np = n(ma) = (nm)a and y = nq = n(mb) = (nm)b. Let s = nm. Since m and n are positive integers, so is s. But (x, y) = (sa, sb). So $(x, y) \gg (a, b)$, which is what we needed to show.

CS 173, Spring 2015 Examlet 4, Part A

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \leq on X as follows

 $(c,r) \leq (d,q)$ if and only if $r \leq q$ and $|c-d| + r \leq q$.

Prove that \leq is antisymmetric.

Solution: Let (c,r) and (d,q) be elements of X. Suppose that $(c,r) \leq (d,q)$ and $(d,q) \leq (c,r)$.

By the definition of \leq , $(c,r) \leq (d,q)$ means that $r \leq q$ and $|c-d|+r \leq q$. Similarly, $(d,q) \leq (c,r)$ means that $q \leq r$ and $|d-c|+q \leq r$.

Since $r \leq q$ and $q \leq r$, q = r. Substituting this into $|c - d| + r \leq q$, we get $|c - d| + r \leq r$. So $|c - d| \leq 0$. Since the absolute value of a real number cannot be negative, this means that |c - d| = 0, so c = d.

Since q = r and c = d, (c, r) = (d, q), which is what we needed to prove.