CS 173, Spring 2015 Examlet 4, Part A

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Define the relation \sim on \mathbb{Z} by

 $x \sim y$ if and only if $5 \mid (3x + 7y)$

Working directly from the definition of divides, prove that \sim is transitive.

CS 173, Spring 2015 Examlet 4, Part A NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if (xy)(p+q)=(pq)(x+y)

Prove that T is transitive.

CS 173, Spring 2015 Examlet 4, Part A NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Recall how to multiply a real number α by a 2D point $(x,y) \in \mathbb{R}^2$: $\alpha(x,y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists a real number $\alpha\geq 1$ such that $(x,y)=\alpha(p,q)$.

Prove that \gg is antisymmetric.

CS 173, Spring 2015 Examlet 4, Part A NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if $x \leq p$ and $xy \leq pq$

Prove that T is antisymmetric.

CS 173, Spring 2015 Examlet 4, Part A

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Let $A = \mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists an integer $n\geq 1$ such that (x,y)=(np,nq).

Prove that \gg is transitive.

CS 173, Spring 2015 Examlet 4, Part A		N	ETII									
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

An open interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of open intervals represented this way.

Now, let's define the interval containment \leq on X as follows

$$(c,r) \preceq (d,q)$$
 if and only if $r \leq q$ and $|c-d| + r \leq q$.

Prove that \leq is antisymmetric.