CS 173, Sp Examlet 4,		N	ETII):									
FIRST:					LAS	Γ:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5			
1. (5 points) Chec	k all boxes that	t cor	rectly o	charact	erize t	his re	elation	n on	he se	et $\{A$	B, C,	D, E,	F
A ->	С -> Е		Refle	exive:		Irre	eflexiv	ve:		$\sqrt{}$			
			Sym	metric:		Ant	tisym	metri	ic:	$\sqrt{}$			
$B \longrightarrow$	D ← F		Tran	sitive:									

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: reflexive, antisymmetric, transitive

3. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lfloor x \rfloor = \lfloor y \rfloor$. Give five members of the equivalence class [13].

CS 173, S _I Examlet 4	oring 2015 , Part B	N	ETII	D:								
FIRST:					LAS'	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

Solution: all pairs of elements must be comparable. That is, for any elements x and y in A, either xRy or yRx.

3. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(x,y)\sim(p,q)$ if and only |x|+|y|=|p|+|q|. List three members of [(2,3)].

Solution: (2,3), (-2,3), (1,-4)

CS 173, Sp Examlet 4	oring 2015 , Part B	N	ETII	D:								
FIRST:					LAS	Т:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

Solution: For any $x, y \in A$, if xRy and yRx, then x = y. Or for any $x, y \in A$, if xRy and $x \neq y$, then $y \not Rx$.

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "touches" relation T on J by (a,b)T(c,d) if and only if a=d or b=c. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Consider (1, 2), (2, 3), and (3, 4). Then (1, 2)T(2, 3) and (2, 3)T(3, 4), but not (1, 2)T(3, 4).

CS 173, S _I Examlet 4	oring 2015 , Part B	N	ETII	D:								
FIRST:					LAS'	Γ:						_
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

 $\textbf{Solution:} \ \ \text{reflexive, symmetric, transitive}$

3. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only ab = pq. List three members of [(5,6)].

Solution: (5,6), (1,30), (-15,-2)

CS 173, S _l Examlet 4	oring 2015 , Part B	N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	Q	10	11	12	1	2	3	1	5		

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: irreflexive, antisymmetric, transitive

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "disjoint" relation D on J by (a,b)D(c,d) if and only if $b \le c$ or $d \le a$. Is D transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Typo: The original version had (a, b)T(c, d) which was corrected to (a, b)D(c, d) at the exam.

Solution: D is not transitive. Consider (1, 2), (3, 5), and (4, 6). Then (1, 2)D(3, 5) and (3, 5)D(4, 6). But not (1, 2)D(4, 6).

\mathbf{CS}	173,	Spring	2015
)	. I O	

Examlet 4, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

2 3

4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

Reflexive:

Irreflexive:

Symmetric:

Antisymmetric:

:

Transitive: $\sqrt{}$

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define the equivalence class $[x]_R$.

Solution: $[x]_R = \{y \in A \mid xRy\}$

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if gcd(a,b) > 1. Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Consider 2, 6, and 3. Then gcd(2,6) > 1 and gcd(6,3) > 1, but gcd(2,3) = 1.