CS 173, Spring 2015 Examlet 4, Part B												
FIRST:					LAST:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
1. (5 points) Chec	ck all boxes tha	t cor	rectly	charact	erize t	his re	elation	n on	the se	et $\{A$	B, C, D, E	F
$A \longrightarrow C \longrightarrow E$			Refle	exive:		Irre	eflexiv	⁄e:				
			Sym	metric:		Ant	isym	metr	ic:			
$B \longrightarrow$	D ← F		Tran	nsitive:								

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lfloor x \rfloor = \lfloor y \rfloor$. Give five members of the equivalence class [13].

CS 173, Spring 2015 **NETID:** Examlet 4, Part B FIRST: LAST: Discussion: Monday 2 3 9 10 11 **12** 1 4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

3. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(x,y)\sim(p,q)$ if and only |x|+|y|=|p|+|q|. List three members of [(2,3)].

CS 173, Spring 2015 **NETID:** Examlet 4, Part B FIRST: LAST: Discussion: Monday 2 3 9 10 11 121 4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "touches" relation T on J by (a,b)T(c,d) if and only if a=d or b=c. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Spring 2015 NETID: Examlet 4, Part B LAST: FIRST: Discussion: Monday 11 12 1 2 3 $\mathbf{5}$ 9 **10** 4

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only ab = pq. List three members of [(5,6)].

CS 173, Spring 2015 **NETID:** Examlet 4, Part B FIRST: LAST: Discussion: Monday 2 3 9 **10** 11 121 4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "disjoint" relation D on J by (a,b)D(c,d) if and only if $b \le c$ or $d \le a$. Is D transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Spring 2015 Examlet 4, Part B												
FIRST:						Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define the equivalence class $[x]_R$.

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if gcd(a,b) > 1. Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.