CS 173, Spring 2015 Examlet 5, Part A NETID:	
FIRST:	LAST:

12

11

 $\mathbf{2}$

1

3

4

5

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (f(x) - y, 5y + 3). Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

Solution: Let (x,y) and (a,b) be pairs of integers and suppose that g(x,y)=g(a,b).

By the definition of g, we know that f(x) - y = f(a) - b and 5y + 3 = 5b + 3. Since 5y + 3 = 5b + 3, 5y = 5b, so y = b. Substituting this back into the f(x) - y = f(a) - b, we find f(x) - y = f(a) - y, so f(x) = f(a). Since f is one-to-one, this implies that x = a.

Since x = a and y = b, (x, y) = (a, b), which is what we needed to show.

9

10

Discussion:

Monday

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \to M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Solution: For every element y in M, there is an element x in C such that g(x) = y.

\mathbf{CS}	173,	\mathbf{Sp}	ring	2015
Exa	\mathbf{mlet}	5 ,	Part	t ${f A}$

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) If a is any real number, (a, ∞) is the set of all real numbers greater than a. Let's define the function $f:(0,\infty)\to\left(\frac{1}{3},\infty\right)$ by $f(x)=\frac{x^2+2}{3x^2}$. Prove that f is onto.

Solution: Let $y \in (\frac{1}{3}, \infty)$. Then $y > \frac{1}{3}$, so 3y > 1, and therefore 3y - 1 > 0.

So $\frac{2}{3y-1}$ is defined and positive. So consider $x=\sqrt{\frac{2}{3y-1}}$. x is defined and belongs to $(0,\infty)$.

Then $x^2 = \frac{2}{3y-1}$. So $x^2 + 2 = \frac{2}{3y-1} + 2 = \frac{2+(6y-2)}{3y-1} = \frac{6y}{3y-1}$. And $3x^2 = \frac{6}{3y-1}$.

Then $f(x) = \frac{x^2+2}{3x^2} = \frac{6y}{6} = y$.

So we've found a pre-image for our original value y, which is what we needed to do.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

Solution: For every elements x and y in C, if g(x) = g(y), then x = y

CS 173,	Spring	2015
Examlet	5, Par	$t \; \mathbf{A}$

NETID:

FIRST.	LAST
riitsi.	LASI.

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Suppose that $h: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ by f(x,y) = (h(x) - y, 3h(x) + 1). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

Solution: Let (x,y) and (p,q) be elements of \mathbb{Z}^2 and suppose that f(x,y)=f(p,q).

By the definition of f, this means that (h(x) - y, 3h(x) + 1) = (h(p) - q, 3h(p) + 1). So h(x) - y = h(p) - q and 3h(x) + 1 = 3h(p) + 1.

Since 3h(x) + 1 = 3h(p) + 1, 3h(x) = 3h(p). So h(x) = h(p). Since h is one-to-one, this means that x = p.

But, also, since h(x) = h(p) and h(x) - y = h(p) - q, we know that y = q.

Since x = p and y = q, (x, y) = (p, q0), which is what we needed to prove.

2. (5 points) Suppose that $g: A \to B$ and $f: B \to C$. Prof. Snape claims that if $f \circ g$ is one-to-one, then f is one-to-one. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.

Solution:

g

red

blue

blue

A

B

C

$\begin{array}{c} \text{CS } 173, \text{ Spring } 2015 \\ \text{Examlet } 5, \text{ Part A} \end{array}$	NETID:		
FIRST:		LAST:	

11

12

 $\mathbf{2}$

1

3

4

5

1. (10 points) Suppose that $g: \mathbb{N} \to \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^2 \to \mathbb{N}^2$ by the equation f(x,y) = (x+g(y),g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

Solution: Let (x, y) and (a, b) be pairs of natural numbers and suppose that f(x, y) = f(a, b).

By the definition of f, we know that x + g(y) = a + g(b) and g(x) = g(a).

10

9

Since g is one-to-one and g(x) = g(a), x = a. Substituting this into x + g(y) = a + g(b), we get x + g(y) = x + g(b), so g(y) = g(b).

Since g is one-to-one, g(y) = g(b) implies that y = b.

Monday

Discussion:

Since x = a and y = b, (x, y) = (a, b), which is what we needed to show.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Solution: For every element y in C, there is an element x in M such that g(x) = y.

CS 173,	Spring	2015
Examlet	5, Part	t ${f A}$

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Let $g: \mathbb{N} \to \mathbb{N}$ be onto, and let $f: \mathbb{N}^2 \to \mathbb{Z}$ be defined by

$$f(n,m) = (m-1)g(n)$$

Prove that f is onto.

Solution: Let a be an integer.

Case 1) $a \ge 0$. Since g is onto, we can find a natural number n such that g(n) = a. Let m = 2. Then $f(n, m) = (2 - 1)g(n) = 1 \cdot a = a$.

Case 2) $a \le 0$. Then (-a) is a natural number. Since g is onto, we can find a natural number n such that g(n) = (-a). Let m = 0. Then $f(n, m) = (0 - 1)g(n) = (-1) \cdot (-a) = a$.

So we've found a point (n, m) such that g(n, m) = a, which is what we needed to show.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

Solution: For every elements x and y in C, if g(x) = g(y), then x = y

CS 173, Spring 2015	
Examlet 5, Part A	NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Suppose that $g: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $h: \mathbb{Z}^2 \to \mathbb{Z}^2$ by h(x,y) = (g(x) + g(y), g(x) - g(y)). Prove that h is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

Solution: Let (x,y) and (p,q) be elements of \mathbb{Z}^2 and suppose that h(x,y)=h(p,q).

By the definition of h, this means that (g(x) + g(y), g(x) - g(y)) = (g(p) + g(q), g(p) - g(q)). So g(x) + g(y) = g(p) + g(q) and g(x) - g(y) = g(p) - g(q).

Adding these equations together, we get 2g(x) = 2g(p). So g(x) = g(p). Since g is one-to-one, this implies that x = p.

Similarly, if we subtract the two equations, we get 2g(y) = 2g(q). So g(y) = g(q). And since g is one-to-one, y = q.

Since x = p and y = q, (x, y) = (p, q), which is what we needed to show.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Solution: For every element y in M, there is an element x in C such that g(x) = y.