CS 173, S _I Examlet 5	N	ETII	D:									
FIRST:					LAST	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (f(x) - y, 5y + 3). Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \to M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

CS 173, Spring 2015	NIEWID.
Examlet 5, Part A	NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) If a is any real number, (a, ∞) is the set of all real numbers greater than a. Let's define the function $f:(0,\infty)\to\left(\frac{1}{3},\infty\right)$ by $f(x)=\frac{x^2+2}{3x^2}$. Prove that f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

CS 173, S _I Examlet 5	oring 2015 , Part A	N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	g	10	11	12	1	2	3	4	5		

1. (10 points) Suppose that $h: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ by f(x,y) = (h(x) - y, 3h(x) + 1). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Suppose that $g: A \to B$ and $f: B \to C$. Prof. Snape claims that if $f \circ g$ is one-to-one, then f is one-to-one. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.

CS 173, S _I Examlet 5	N	ETII	D:									
FIRST:					LAST	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (10 points) Suppose that $g: \mathbb{N} \to \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^2 \to \mathbb{N}^2$ by the equation f(x,y) = (x+g(y),g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

CS 173, Spring 2015

Examlet 5, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Let $g: \mathbb{N} \to \mathbb{N}$ be onto, and let $f: \mathbb{N}^2 \to \mathbb{Z}$ be defined by

$$f(n,m) = (m-1)g(n)$$

Prove that f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

CS 173, S _I Examlet 5	oring 2018 , Part A	5 N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion	Monday	Q	10	11	12	1	2	3	1	5		

1. (10 points) Suppose that $g: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $h: \mathbb{Z}^2 \to \mathbb{Z}^2$ by h(x,y) = (g(x) + g(y), g(x) - g(y)). Prove that h is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.