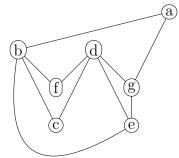
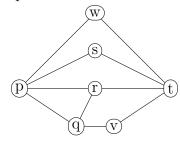
CS 173, Spring 2015

Examlet 6, Part A


NETID:

FIRST:


LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Graph X

Graph Y

1. (11 points) Are graphs X and Y (above) isomorphic? Justify your answer.

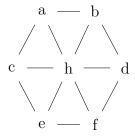
Solution: Yes. We can map the nodes as follows:

$$f(b)=t,\, f(d)=p,\, f(f)=w,\, f(c)=s,,\, f(e)=r,\, f(g)=q),\, f(a)=v.$$

2. (4 points) Is C_5 a subgraph of W_7 ? Briefly justify your answer.

Solution: Yes. The copy of C_5 consists of 4 consecutive nodes along the rim, plus the hub of the wheel. (A picture would also work here.)

CS 173,	Spring	2015
---------	--------	------


Examlet 6, Part A

NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (11 points) How many isomorphisms are there from G (below) to itself? Justify your answer and/or show your work clearly .

Solution: 12. There are 6 choices for how to map node a. Then node b can map to either of the two adjacent nodes. After that, the rest of the mapping is forced.

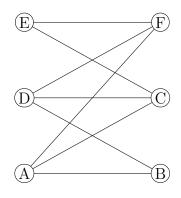
2. (4 points) How many edges are in the complete bipartite graph $K_{11,6}$?

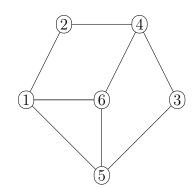
Solution: $11 \times 6 = 66$

CS 173, Spring 2015

Examlet 6, Part A

NETID:


FIRST:


LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

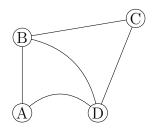
Graph X

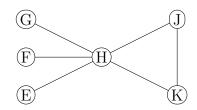
Graph Y

1. (11 points) Are graphs X and Y (above) isomorphic? Justify your answer.

Solution: No, they aren't isomorphic. Graph Y has a 5-cycle but graph X has only even cycles. Also, one of the degree-3 nodes in graph Y is connected to three degree-3 nodes, but in graph X each degree-3 node is connected to only two other degree-3 nodes.

2. (4 points) The complete graph K_8 contains 8 vertices. How many edges does it have?


Solution: $\frac{8 \cdot 7}{2} = 28$


CS 173, Spring 2015 Examlet 6, Part A

NETID:

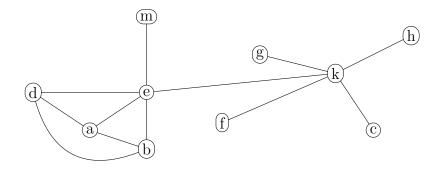
FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (11 points) How many isomorphisms are there from G (including all 10 nodes above) to itself? Justify your answer and/or show your work clearly .

Solution: Nodes A and C can be interchanged, as can (independently) B and D. So there are four choices for the lefthand component. On the right size, J and K can be interchanged (2 choices) and E,F,G permuted (3! choices). So there are 12 choices for the righthand component. Thus a total of 48 isomorphisms of the whole graph.

2. (4 points) Is G bipartite? Briefly explain why or why not.

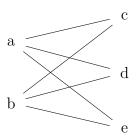

Solution: No, it is not bipartite. It contains copies of C_3 (e.g. A,B,D) which cannot be divided between the two sets as required by the definition of bipartite.

CS 173,	Spring	2015
Examlet	6, Part	\mathbf{A}

NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

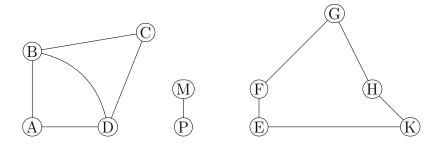


1. (11 points) How many isomorphisms are there from G (above) to itself? Justify your answer and/or show your work clearly .

Solution: The four nodes f, g, c, h can be permuted (4! choices). independently, the nodes a, b, d can be permuted (3! choices). So there are a total of $4! \cdot 3! = 144$ isomorphisms.

2. (4 points) Draw a picture of the graph $K_{2,3}$.

Solution:



CS 173, Spring 2015 Examlet 6, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (11 points) How many isomorphisms are there from G (including all 11 nodes above) to itself? Justify your answer and/or show your work clearly.

Solution: A and C can be swapped, as can (independently) B and D. So there are four choices for the lefthand component. M and P can be swapped (2 choices). For the righthand, there are 5 choices for where G maps to, then two choices for the image of H. So a total of 10 choices.

So the total number of isomorphisms is $4 \cdot 2 \cdot 10 = 80$.

2. (4 points) Is the graph C_{10} bipartite? Briefly justify your answer.

Solution: Yes, it is bipartite. As you walk around the cycle, assign nodes to the two subsets in an alternating manner.