CS 173, Spring 2015 Examlet 7, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim: For all integers $a, b, n, n \ge 1$, if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$.

Use this definition in your proof: $x \equiv y \pmod{p}$ if and only if x = y + kp for some integer k.

Proof by induction on n.

Base case(s): At n = 1, our claim becomes "if $a \equiv b \pmod{7}$ then $a \equiv b \pmod{7}$ " which is clearly true.

Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$, for all integers a, b, n, where $n = 1, \ldots, k$,

a and b need to be introduced at some point in this proof, but there's several places you might do this. For example, you could say "let a and b be integers" right at the start. Then your inductive hypothesis would just be "if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$, for $n = 1, \ldots, k$." We won't get picky about this when grading.

Rest of the inductive step:

Let a and b be integers.

Suppose that $a \equiv b \pmod{7}$, then a = b + 7p for some integer p.

From the inductive hypothesis, we know that $a^k \equiv b^k \pmod{7}$, So $a^k = b^k + 7q$ for some integer q.

Combining these two equations, we get that

$$a^{k+1} = (b+7p)(b^k+7q) = b^{k+1} + 7(pb^k+bq+7pq)$$

 $pb^k + bq + 7pq$ is an integer since p, q, and b are integers. So we know that $a^{k+1} \equiv b^{k+1} \pmod{7}$, which is what we needed to prove.

CS 173, Spring 2015

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

 $2 \quad 3$

4 5

Use (strong) induction to prove the following claim

Claim: $\sum_{k=0}^{n} p^k = \frac{p^{n+1}-1}{p-1}$, for all natural numbers n and all real numbers $p \neq 1$.

Proof by induction on n.

Base case(s): at n = 0, $\sum_{k=0}^{n} p^k = p^0 = 1$. And $\frac{p^{n+1}-1}{p-1} = \frac{p-1}{p-1} = 1$. So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{k=0}^{n} p^k = \frac{p^{n+1}-1}{p-1}$, all real numbers $p \neq 1$. and all natural numbers $n = 0, \dots, j$.

p needs to be introduced somewhere, but there are several options. For example, you could say "let p be a real number $\neq 1$ " before you give the inductive hypothesis. We won't be picky about this when grading.

Notice that the moving variable for the summation is k, so you can't also use k for the bound on the induction variable. You need to use a fresh variable name for one of the two.

Rest of the inductive step: Let p be a real number $\neq 1$.

Then
$$\sum_{k=0}^{j+1} p^k = p^{j+1} + \sum_{k=0}^{j} p^k$$

By the inductive hypothesis, we know that $\sum_{k=0}^{j} p^k = \frac{p^{j+1}-1}{p-1}$. Substituting this into the previous equation, we get

$$\sum_{k=0}^{j+1} p^k = p^{j+1} + \frac{p^{j+1}-1}{p-1} = \frac{p^{j+1}(p-1) + p^{j+1}-1}{p-1} = \frac{p^{j+2}-p^{j+1} + p^{j+1}-1}{p-1} = \frac{p^{j+2}-1}{p-1}$$

So $\sum_{k=0}^{j+1} p^k = \frac{p^{j+2}-1}{p-1}$ which is what we needed to show.

CS 173, Spring 2015

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$
, for all positive integers n .

Proof by induction on n.

Base case(s): n = 1. At n = 1, $\sum_{j=1}^{n} j(j+1) = 1(1+1) = 2$ Also, $\frac{n(n+1)(n+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = 2$. So the two sides of the equation are equal at n = 1.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$
, for $n = 1, \dots, k$, for some integer $k \ge 1$.

Rest of the inductive step:

Consider $\sum_{j=1}^{k+1} j(j+1)$. By removing the top term of the summation and applying the inductive hypothesis, we get

$$\sum_{j=1}^{k+1} j(j+1) = (k+1)(k+2) + \sum_{j=1}^{k} j(j+1) = (k+1)(k+2) + \frac{k(k+1)(k+2)}{3}$$

Simplifying the algebra:

$$(k+1)(k+2) + \frac{k(k+1)(k+2)}{3} = \frac{3(k+1)(k+2)}{3} + \frac{k(k+1)(k+2)}{3} = \frac{3(k+1)(k+2) + k(k+1)(k+2)}{3} = \frac{(k+1)(k+2)(k+3)}{3} = \frac{(k+1)(k+2)}{3} = \frac{(k+1)(k+2)}$$

So
$$\sum_{i=1}^{k+1} j(j+1) = \frac{(k+1)(k+2)(k+3)}{3}$$
, which is what we needed to show.

CS 173, Spring 2015 Examlet 7, Part A

NETID:

FIRST:

LAST:

12

Discussion:

Monday

10

9

11

1 2

3 4

5

Use (strong) induction to prove the following claim:

Claim: $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$ for all positive integers n.

Proof by induction on n.

Base case(s): n = 1. At n = 1, $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{1}{1(1+1)} = \frac{1}{2}$. Also $\frac{n}{n+1} = \frac{1}{2}$. So the two sides of the equation are equal.

Inductive hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$ for $n = 1, \dots, k$ for some integer $k \ge 1$.

Rest of the inductive step:

Consider $\sum_{j=1}^{k+1} \frac{1}{j(j+1)}$. By removing the top term of the summation and then applying the inductive hypothesis, we get

$$\sum_{j=1}^{k+1} \frac{1}{j(j+1)} = \frac{1}{(k+1)(k+2)} + \sum_{j=1}^{k} \frac{1}{j(j+1)} = \frac{1}{(k+1)(k+2)} + \frac{k}{k+1}.$$

Adding the two fractions together:

$$\frac{1}{(k+1)(k+2)} + \frac{k}{k+1} = \frac{1}{(k+1)(k+2)} + \frac{k(k+2)}{(k+1)(k+2)} = \frac{1+k(k+2)}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{(k+2)(k+2)} = \frac{k$$

So $\sum_{j=1}^{k+1} \frac{1}{j(j+1)} = \frac{k+1}{k+2}$, which is what we needed to show.

CS 173, Spring 2015 Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim: $2^{n+2} + 3^{2n+1}$ is divisible by 7, for all natural numbers n.

Proof by induction on n.

Base case(s): At n = 0, $2^{n+2} + 3^{2n+1} = 2^2 + 3 = 7$ which is clearly divisible by 7.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $2^{n+2} + 3^{2n+1}$ is divisible by 7, for $n = 0, 1, \dots, k$.

Rest of the inductive step:

At
$$n = k + 1$$
, $2^{n+2} + 3^{2n+1}$ is equal to $2^{k+3} + 3^{2k+3}$.

$$2^{k+3} + 3^{2k+3} = 2 \cdot 2^{k+2} + 9 \cdot 3^{2k+1} = 2(2^{k+2} + 3^{2k+1}) + 7(3^{3k+1})$$

By the inductive hypothesis, $2^{k+2}+3^{2k+1}$ is divisible by 7. So $2(2^{k+2}+3^{2k+1})$ is divisible by 7. $7(3^{3k+1})$ is divisible by 7 because 3^{3k+1} is an integer. So the sum of these two terms must be divisible by 7.

Thus, $2^{k+3} + 3^{2k+3}$ is divisible by 7, which is what we needed to show.

CS 173, Spring 2015

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

11

12

1

2 3

4 5

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} 2(-1)^{p} p^{2} = (-1)^{n} n(n+1), \text{ for all positive integers } n$$

9

Proof by induction on n.

Base case(s): At n = 1, $\sum_{p=1}^{n} 2(-1)^p p^2 = 2(-1)^1 1^2 = -2$. And $(-1)^n n(n+1) = (-1)^1 1 \cdot 2 = -2$. So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{p=1}^{n} 2(-1)^p p^2 = (-1)^n n(n+1)$$
, for $n = 1, 2, \dots k$.

Rest of the inductive step:

$$\sum_{p=1}^{k+1} 2(-1)^p p^2 = 2(-1)^{k+1} (k+1)^2 + \sum_{p=1}^{k} 2(-1)^p p^2$$

By the inductive hypothesis, we know that $\sum_{p=1}^{k} 2(-1)^p p^2 = (-1)^k k(k+1)$. Substituting this into the previous equation, we get

$$\sum_{p=1}^{k+1} 2(-1)^p p^2 = 2(-1)^{k+1} (k+1)^2 + (-1)^k k(k+1)$$

$$= (k+1)(-1)^{k+1} (2(k+1) - k)$$

$$= (k+1)(-1)^{k+1} (k+2) = (-1)^{k+1} (k+1)(k+2)$$

So
$$\sum_{p=1}^{k+1} 2(-1)^p p^2 = (-1)^{k+1} (k+1)(k+2)$$
 which is what we needed to show.