Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by

$$f(1) = 3 \qquad \qquad f(2) = 5$$

$$f(n) = 3f(n-1) - 2f(n-2)$$
 for all $n \ge 3$.

Use induction to prove that $f(n) = 2^n + 1$

Proof by induction on n.

Base case(s):

Solution:

$$n = 1$$
: $f(1) = 3$. Also $2^1 + 1 = 3$.

$$n = 2$$
: $f(2) = 5$. Also $2^2 + 1 = 5$.

So the claim holds for both n = 1 and n = 2.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution: Suppose that $f(n) = 2^n + 1$ for n = 1, 2, ..., k - 1.

Rest of the inductive step:

Solution: By the definition of f and the inducive hypothesis, we get that

$$f(k) = 3f(k-1) = 2f(k-2)$$

= $3(2^{k-1}+1) - 2(2^{k-2}+1)$

Simplifying the algebra, we get:

$$f(k) = 3 \cdot 2^{k-1} + 3 - 2^{k-1} - 2$$

= $(3-1)2^{k-1} + (3-2) = 2^k + 1$

Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = f(1) = f(2) = 1$$

$$f(n) = f(n-1) + f(n-3)$$
, for all $n \ge 3$

Use induction to prove that $f(n) \ge \frac{1}{2}(\sqrt{2})^n$ You may use the fact that $\sqrt{2}$ is smaller than 1.5.

Proof by induction on n.

Base case(s): For n = 0, $\frac{1}{2}(\sqrt{2})^n = \frac{1}{2}$. For n = 1, $\frac{1}{2}(\sqrt{2})^n = \frac{1}{2}(\sqrt{2}) = \frac{1}{\sqrt{2}}$. For n = 2, $\frac{1}{2}(\sqrt{2})^n = \frac{1}{2}(\sqrt{2})^2 = \frac{1}{2}(2) = 1$ In all three cases, the value is $\leq 1 = f(n)$.

Solution:

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution:

Suppose that $f(n) \ge \frac{1}{2}(\sqrt{2})^n$ for $n = 0, 1, \dots, k - 1$.

Rest of the inductive step:

Solution:

Using the definition of f and the inductive hypothesis, we get

$$f(k) = f(k-1) + f(k-3) \ge \frac{1}{2}(\sqrt{2})^{k-1} + \frac{1}{2}(\sqrt{2})^{k-3}$$

Simplifying this expression, we get

$$f(k) \geq \frac{1}{2}(\sqrt{2})^{k-1} + \frac{1}{2}(\sqrt{2})^{k-3} = \frac{1}{2}(\sqrt{2})^{k-1} + \frac{1}{2}\frac{1}{2}(\sqrt{2})^{k-1}$$
$$= \frac{1}{2}(\sqrt{2})^{k-1}(1+\frac{1}{2}) = \frac{1}{2}(\sqrt{2})^{k-1}(1.5)$$
$$\geq \frac{1}{2}(\sqrt{2})^{k-1}(\sqrt{2}) = \frac{1}{2}(\sqrt{2})^{k}$$

Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by is defined by

$$f(1) = 5$$
 $f(2) = -5$

$$f(n) = 4f(n-2) - 3f(n-1)$$
, for all $n \ge 3$

Use induction to prove that $f(n) = 2 \cdot (-4)^{n-1} + 3$

Proof by induction on n.

Base case(s):

Solution: For n = 1, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^0 + 3 = 2 \cdot 1 + 3 = 5$, which is equal to f(1).

For n = 2, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^1 + 3 = 2 \cdot (-4) + 3 = -5$, which is equal to f(2).

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution:

Suppose that $f(n) = 2 \cdot (-4)^{n-1} + 3$, for $n = 1, 2, \dots, k-1$, for some integer $k \geq 3$

Rest of the inductive step:

Solution:

Using the definition of f and the inductive hypothesis, we get

$$f(k) = 4f(k-2) - 3f(k-1) = 4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3)$$

Simplifying the algebra,

$$4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3) = 8 \cdot (-4)^{k-3} + 12 - 6 \cdot (-4)^{k-2} - 9$$

$$= -2 \cdot (-4)^{k-2} - 6 \cdot (-4)^{k-2} + 3$$

$$= -8 \cdot (-4)^{k-2} + 3 = 2 \cdot (-4)^{k-1} + 3$$

So $f(k) = 2 \cdot (-4)^{k-1} + 3$, which is what we needed to prove.

Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is defined by:

$$f(1) = 3$$
 $f(2) = 7$

$$f(n) = f(n-1) + 2f(n-2)$$
, for all $n \ge 3$

Use induction to prove that $f(n) \leq 3^n$

Proof by induction on n.

Base case(s):

Solution:

For
$$n = 1$$
, $f(n) = 3$ and $3^n = 3$, so $f(n) \le 3^n$.

For
$$n = 2$$
, $f(n) = 7$ and $3^n = 3^2 = 9$, so $f(n) \le 3^n$.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution:

Suppose that $f(n) \leq 3^n$, for n = 1, 2, ..., k - 1, for some integer $k \geq 3$.

Rest of the inductive step:

Solution:

By the inductive hypothesis, we know that $f(k-1) \leq 3^{k-1}$ and $f(k-2) \leq 3^{k-2}$. So, using these two inequalities plus the definition of f, we get:

$$f(k) = f(k-1) + 2f(k-2) \le 3^{k-1} + 2 \cdot 3^{k-2}$$

But then

$$3^{k-1} + 2 \cdot 3^{k-2} \le 3^{k-1} + 2 \cdot 3^{k-1} = 3 \cdot 3^{k-1} = 3^k$$

So $f(k) \leq 3^k$, which is what we needed to show.

Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $P: \mathbb{N} \to \mathbb{N}$ is defined by

$$P(0) = 2$$
 $P(1) = 1$

$$P(n) = P(n-1) + 6P(n-2)$$
, for all $n \ge 2$

Use induction to prove that $P(n) = 3^n + (-2)^n$

Proof by induction on n.

Base case(s):

Solution:

$$n=0$$
: $P(0)=2$. Also $3^n+(-2)^n=3^0+(-2)^0=1+1=2$. So the claim holds at $n=0$.

$$n = 1$$
: $P(1) = 1$. Also $3^n + (-2)^n = 3^1 + (-2)^1 = 3 - 2 = 1$. So the claim holds at $n = 1$.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution:

Suppose that
$$P(n) = 3^n + (-2)^n$$
 for $n = 0, 1, ..., k - 1$, for some integer $k \ge 2$.

Rest of the inductive step:

Solution:

$$\begin{array}{ll} P(k) &=& P(k-1)+6P(k-2) \quad \text{ by the definition of P} \\ &=& (3^{k-1}+(-2)^{k-1})+6(3^{k-2}+(-2)^{k-2}) \quad \text{ by the inductive hypothesis} \\ &=& 3^{k-1}+(-2)^{k-1}+6\cdot 3^{k-2}+6\cdot (-2)^{k-2} \\ &=& 3^{k-1}+(-2)^{k-1}+2\cdot 3^{k-1}-3\cdot (-2)^{k-1} \\ &=& 3\cdot 3^{k-1}-2\cdot (-2)^{k-1} \\ &=& 3^k+(-2)^k \end{array}$$

So $P(k) = 3^k + (-2)^k$, which is what we needed to show.

Examlet 8, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by

$$f(1) = 0$$
 $f(2) = 12$

$$f(n) = 4f(n-1) - 3f(n-2)$$
, for $n \ge 3$

Use induction to prove that $f(n) = 2 \cdot 3^n - 6$

Proof by induction on n.

Base case(s):

Solution: For n=1, f(1)=0 and $2\cdot 3^n-6=2\dot 3-6=0$. So the claim is true.

For n = 2, f(2) = 12 and $2 \cdot 3^n - 6 = 23^2 - 6 = 18 - 6 = 12$. So the claim is true.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution: Suppose that $f(n) = 2 \cdot 3^n - 6$ for n = 1, 2, ..., k - 1 for some positive integer $k \ge 3$.

Rest of the inductive step:

Solution: $f(k) = 4 \cdot f(k-1) - 3 \cdot f(k-2)$ by the definition of f.

So $f(k) = 4 \cdot (2 \cdot 3^{k-1} - 6) - 3 \cdot (2 \cdot 3^{k-2} - 6)$ by the inductive hypothesis.

So
$$f(k) = 8 \cdot 3^{k-1} - 24 - 6 \cdot 3^{k-2} + 18 = 8 \cdot 3^{k-1} - 2 \cdot 3^{k-1} - 6 = 6 \cdot 3^{k-1} - 6 = 2 \cdot 3^k - 6$$

So $f(k) = 2 \cdot 3^k - 6$ which is what we needed to show.