CS 173, Spring 2015 Examlet 8, Part B

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = 17$$

 $F(n) = 3F(n/2), \text{ for } n \ge 4$

Use unrolling to find the closed form for F. Show your work and simplify your answer.

CS 173, S _I Examlet 8	oring 201 , Part B	o N	ETII) :							
FIRST:					LAS	Т:					
Discussion:	Monday	9	10	 11	$\overline{12}$	1	2	3	4	5	

1. (8 points) Suppose we have a function g defined by

$$g(0) = g(1) = c$$

 $g(n) = kg(n-2) + n^2$, for $n \ge 2$

where k and c are constants. Express g(n) in terms of g(n-6) (where $n \ge 6$). Show your work and simplify your answer.

2. (2 points) Check the (single) box that best characterizes each item.

The number of edges in the 4-dimensional hypercube Q_4

5

12

32

64

FIRST:					LAS	Г:					
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
(8 points) Supp	pose we have a	funct	ion f	defined	l by						
(1) 1	•		v		J						
		f(1) =	5							
					(-1) + i	n^2 for	$n \geq$	2			

2. (2 points) Check the (single) box that best characterizes each item.

The diameter of the 4-dimensional hypercube Q_4

5

CS 173, Spring 2015

Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = c$$

$$F(n) = F(n/2) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$F(n) = F(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i}$$

Finish finding the closed form for F. Show your work and simplify your answer.

OC 170 C 001F	
CS 173, Spring 2015	NETID.
Examlet 8, Part B	

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(1) = c$$

$$g(n) = 3g(n/3) + n \text{ for } n \ge 3$$

Express g(n) in terms of $g(n/3^3)$ (where $n \geq 27$). Show your work and simplify your answer.

2. (2 points) Define the Fibonacci numbers

CS 173, Spring 2015

Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(10 points) Suppose we have a function F defined (for n a power of 3) by

$$F(1) = 5$$

 $F(n) = 3F(n/3) + 7 \text{ for } n \ge 3$

Your partner has already figured out that

$$F(n) = 3^k F(n/3^k) + 7 \sum_{p=0}^{k-1} 3^p$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$