											1
CS 173, S _I Examlet 9		NI	ETII):							
FIRST:					LAS'	Γ:					
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
1. (8 points) Con		0 0		r G							
	$a S \mid S S \mid c$ tart symbol. Th	'		symbol	ls are a	a, b, a	and c .				
	equences of leaf s sequence of la				-					_	

This is impossible. The grammar produces terminals only in pairs and this string has odd length.

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{n+1} 2^k \qquad \qquad 2^{n+1} + 1 \qquad \qquad 2^{n+2} - 1 \qquad \boxed{\checkmark} \qquad 2^{n+2} - 2 \qquad \boxed{} \qquad 2^{n+1} - 1 \qquad \boxed{}$$

A tree with n nodes has	n edges	n-1 edges	$\sqrt{}$	$\leq n \text{ edges}$
	n/2 edges	$\log n$ edges		

Examlet 9, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

 $\mathbf{2}$

1

4

5

3

1. (8 points) Consider the following grammar G

S is the only start symbol. The terminal symbols are a and b

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

b a a a b

a a a a b

In the rules for grammar G, whenever b is produced, an a is produced right before it. So it's impossible to generate a string like this one which starts with a b.

2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a full and complete 5-ary tree of height h

$$5^h$$

$$\sqrt{}$$

$$\leq 5^h$$

$$\geq 5^h$$

$$5^{h+1} - 1$$

The chromatic number of a full 3-ary tree

$$\leq 2$$

./
V

3

$$\leq 3$$

can't tell

Examlet 9, Part B

NETID:		

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

1 2

3 4

5

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \rightarrow SSa \mid cS \mid cc$$

2. (4 points) Check the (single) box that best characterizes each item.

 $\sum_{k=1}^{n-1} 2^k$

 $2^n + 1$

 $2^n - 1$

 $2^{n}-2$

 $\sqrt{}$

The root node of a tree is an internal node

always

sometimes

 $\sqrt{}$

never

Examlet 9, Part B

NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (8 points) Consider the following grammar G

$$S \rightarrow b \ a \ S \ | \ S \ S \ | \ c \ | \ c \ a$$

S is the only start symbol. The terminal symbol are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

 $c\ a\ c\ b\ c$

In the rules for grammar G, every b is immediately followed by an a. So it's impossible to generate a string like this one which contains the sequence bc.

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{n-1} 2^k$$

$$2^n - 2$$

$$2^{n} - 1$$

$$2^{n-1}-1$$

$$2^{n+1}-1$$

A full m-ary tree with i internal nodes has mi + 1 nodes total.

always

sometimes

	1

never

Examlet 9, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

1 2

3 4

1 5

1. (8 points) Here is a grammar with start symbol S and terminals symbols a,b, and c. Circle the trees that match the grammar.

$$S \rightarrow SS \mid abc \mid a$$

2. (4 points) Check the (single) box that best characterizes each item.

The number of nodes in a binary tree of height h

$$\geq 2^h$$

$$=2^{h+1}-1$$

$$\leq 2^{h+1} - 1$$

$$> 2^{h+1} - 1$$

The level of the root node in a tree of height h.

 $h \square h$

		_	
ı	1		
+	1		

Examlet 9, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

1 2

3 4

4 5

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

$$S \rightarrow a N b \mid a N c \mid a$$

$$N \rightarrow S S \mid d$$

2. (4 points) Check the (single) box that best characterizes each item.

The mathematical symbol for an empty (zero-length) string

$$\epsilon$$
 $\sqrt{}$

NULL

$$\sum_{k=1}^{n+1} 2^k$$

$$2^{n+1}+1$$

$$2^{n+2}-1$$

$$2^{n+2}-2$$

$$\sqrt{}$$

$$2^n-2$$