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CS 173, Spring 2015

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: n2 < 2n for any integer n ≥ 5.

Hint: first prove that 2n + 1 ≤ n2 for any integer n ≥ 5. (This doesn’t require induction.)

Base Case(s): At n = 5, n2 = 25 < 32 = 25. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that n2 < 2n for n = 5, 6, . . . , k.

Inductive Step:

Since k ≥ 5, k ≥ 1. So 2k + 1 ≤ 3k ≤ 5k ≤ k2. That is 2k + 1 ≤ k2.

Using the above equation, we can compute (k + 1)2 = k2 + (2k + 1) ≤ k2 + k2 = 2k2

By the induction hypothesis k2 < 2k. Combining this with the above equation, we get (k + 1)2 ≤
2k2 < 2 · 2k = 2k+1.

So (k + 1)2 < 2k+1 which is what we needed to prove.
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(15 points) Use (strong) induction to prove the following claim:

Claim:

2n∑

k=n+1

1

k
≥ 7

12
, for any integer n ≥ 2.

Hint: recall that if x ≤ y, then 1

y
≤ 1

x

Base Case(s): At n = 2,
2n∑

k=n+1

1

k
=

1

3
+

1

4
=

7

12
. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that
2n∑

k=n+1

1

k
≥ 7

12
, for n = 2, 3, . . . , p.

Inductive Step: Substituing n = p+1 into the summation and then using the inductive hypothesis,
we get

2p+2∑

k=p+2

1

k
= (

2p∑

k=p+1

1

k
) + (

1

2p + 1
+

1

2p + 2
− 1

p + 1
) ≥ 7

12
+ (

1

2p + 1
+

1

2p + 2
− 1

p + 1
)

Now, notice that 1

2p+1
≥ 1

2

1

p+1
and 1

2p+2
= 1

2

1

p+1
. So 1

2p+1
+ 1

2p+2
≥ 1

p+1
. Therefore 1

2p+1
+ 1

2p+2
− 1

p+1
≥ 0.

Combining the results of the previous two paragraphs, we get

2p+2∑

k=p+2

1

k
≥ 7

12
+ (

1

2p + 1
+

1

2p + 2
− 1

p + 1
) ≥ 7

12

This is what we needed to show.
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(15 points) Let function f : Z
+ → N be defined by

f(1) = 0

f(n) = 1 + f(⌊n/2⌋), for n ≥ 2,

Use (strong) induction on n to prove that f(n) ≤ log2 n for any positive integer n. You cannot
assume that n is a power of 2. However, you can assume that the log function is increasing (if x ≤ y then
log x ≤ log y) and that ⌊x⌋ ≤ x.

Base Case(s):

f(1) = 0 and log2 1 = 0 So f(1) ≤ log2 1.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that f(n) ≤ log2n for n = 1, . . . , k − 1.

Inductive Step:

We can assume that k ≥ 2 (since we did n = 1 for the base case). So ⌊k/2⌋ must be at least 1 and
less than k. Therefore, by the inductive hypothesis, f(⌊k/2⌋) ≤ log2(⌊k/2⌋).

We know that f(k) = 1 + f(⌊k/2⌋), by the definition of f . Substituting the result of the previous
paragraph, we get that f(k) ≤ 1 + log2(⌊k/2⌋).

⌊k/2⌋ ≤ k/2. So log2(⌊k/2⌋) ≤ log2(k/2) = (log2 k) + (log2 1/2) = (log2 k) − 1.

Since f(k) ≤ 1 + log2(⌊k/2⌋) and log2(⌊k/2⌋) ≤ (log2 k) − 1, f(k) ≤ 1 + (log2 k) − 1 = (log2 k). This
is what we needed to show.
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Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers n ≥ 2, (2n)! > 2nn!

Base Case(s): At n = 2, (2n)! = 4! = 24. 2nn! = 4 · 2 = 8. So (2n)! > 2nn!

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (2n)! > 2nn! for all n = 2, 3, . . . , k for some integer k ≥ 2.

Inductive Step: Notice that 2k + 1 ≥ 1 because k is positive. And (2k)! > 2kk! by the induction
hypothesis.

So then

(2(k + 1))! = (2k + 2)(2k + 1)(2k)! ≥ (2k + 2)(2k)! > (2k + 2)(2kk!) = (k + 1)2k+1k! = 2k+1(k + 1)!.

So (2(k + 1))! > 2k+1(k + 1)! which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > −1, (1 + x)n ≥ 1 + nx.

Base Case(s): At n = 0, (1 + x)n = (1 + x)0 = 1 and 1 + nx = 1 + 0 = 1. So (1 + x)n ≥ 1 + nx.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (1 + x)n ≥ 1 + nx for any natural number n ≤ k, where k is a natural number.

Inductive Step: By the inductive hypothesis (1+ x)k ≥ 1+ kx. Notice that (1+ x) is positive since
x > −1. So (1 + x)k+1 ≥ (1 + x)(1 + kx).

But (1 + x)(1 + kx) = 1 + x + kx + kx2 = 1 + (1 + k)x + kx2.

And 1 + (1 + k)x + kx2 ≥ 1 + (1 + k)x because kx2 is non-negative.

So (1+x)k+1 ≥ (1+x)(1+ kx) ≥ 1+ (1+ k)x, and therefore (1+x)k+1 ≥ 1+ (1+ k)x, which is what
we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n,
n∑

p=1

1√
p
≤ 2

√
n

Hint: notice that (
√

n −
√

n + 1 )2 ≥ 0. What does this imply about 2
√

n
√

n + 1 ?

Base Case(s): At n = 1,

n∑

p=1

1√
p

= 1 ≤ 2 = 2 · n. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that

n∑

p=1

1√
p
≤ 2

√
n for n = 1, 2, . . . , k.

Inductive Step:

First, notice that (
√

k −
√

k + 1 )2 ≥ 0. Multiplying this out gives us k − 2
√

k
√

k + 1 + (k + 1) ≥ 0.
So 2k + 1 ≥ 2

√
k
√

k + 1.

Using this inequality plus the inductive hypothesis, we can compute

k+1∑

p=1

1√
p

= (

k∑

p=1

1√
p
) +

1√
k + 1

≤ 2
√

k +
1√

k + 1
=

2
√

k
√

k + 1 + 1√
k + 1

≤ (2k + 1) + 1√
k + 1

=
2k + 2√
k + 1

=
2(k + 1)√

k + 1
= 2

√
k + 1


