NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: $n^2 < 2^n$ for any integer $n \ge 5$.

Hint: first prove that $2n + 1 \le n^2$ for any integer $n \ge 5$. (This doesn't require induction.)

Base Case(s): At n = 5, $n^2 = 25 < 32 = 2^5$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $n^2 < 2^n$ for $n = 5, 6, \dots, k$.

Inductive Step:

Since $k \ge 5$, $k \ge 1$. So $2k + 1 \le 3k \le 5k \le k^2$. That is $2k + 1 \le k^2$.

Using the above equation, we can compute $(k+1)^2 = k^2 + (2k+1) \le k^2 + k^2 = 2k^2$

By the induction hypothesis $k^2 < 2^k$. Combining this with the above equation, we get $(k+1)^2 \le 2k^2 < 2 \cdot 2^k = 2^{k+1}$.

So $(k+1)^2 < 2^{k+1}$ which is what we needed to prove.

NETID:

FIRST:

LAST:

4

5

Discussion: Monday 9 10 11 12 1 2 3

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$, for any integer $n \ge 2$.

Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

Base Case(s): At n = 2, $\sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$, for n = 2, 3, ..., p.

Inductive Step: Substituing n = p + 1 into the summation and then using the inductive hypothesis, we get

$$\sum_{k=p+2}^{2p+2} \frac{1}{k} = \left(\sum_{k=p+1}^{2p} \frac{1}{k}\right) + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right)$$

Now, notice that $\frac{1}{2p+1} \ge \frac{1}{2} \frac{1}{p+1}$ and $\frac{1}{2p+2} = \frac{1}{2} \frac{1}{p+1}$. So $\frac{1}{2p+1} + \frac{1}{2p+2} \ge \frac{1}{p+1}$. Therefore $\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1} \ge 0$. Combining the results of the previous two paragraphs, we get

$$\sum_{k=n+2}^{2p+2} \frac{1}{k} \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12}$$

This is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

$$f(1) = 0$$

$$f(n) = 1 + f(\lfloor n/2 \rfloor)$$
, for $n \ge 2$,

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $\lfloor x \rfloor \leq x$.

Base Case(s):

$$f(1) = 0$$
 and $\log_2 1 = 0$ So $f(1) \le \log_2 1$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) \leq \log_2 n$ for $n = 1, \dots, k - 1$.

Inductive Step:

We can assume that $k \geq 2$ (since we did n = 1 for the base case). So $\lfloor k/2 \rfloor$ must be at least 1 and less than k. Therefore, by the inductive hypothesis, $f(\lfloor k/2 \rfloor) \leq \log_2(\lfloor k/2 \rfloor)$.

We know that $f(k) = 1 + f(\lfloor k/2 \rfloor)$, by the definition of f. Substituting the result of the previous paragraph, we get that $f(k) \leq 1 + \log_2(\lfloor k/2 \rfloor)$.

$$\lfloor k/2 \rfloor \le k/2$$
. So $\log_2(\lfloor k/2 \rfloor) \le \log_2(k/2) = (\log_2 k) + (\log_2 1/2) = (\log_2 k) - 1$.

Since $f(k) \le 1 + \log_2(\lfloor k/2 \rfloor)$ and $\log_2(\lfloor k/2 \rfloor) \le (\log_2 k) - 1$, $f(k) \le 1 + (\log_2 k) - 1 = (\log_2 k)$. This is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers $n \ge 2$, $(2n)! > 2^n n!$

Base Case(s): At n = 2, (2n)! = 4! = 24. $2^n n! = 4 \cdot 2 = 8$. So $(2n)! > 2^n n!$

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(2n)! > 2^n n!$ for all n = 2, 3, ..., k for some integer $k \ge 2$.

Inductive Step: Notice that $2k + 1 \ge 1$ because k is positive. And $(2k)! > 2^k k!$ by the induction hypothesis.

So then

 $(2(k+1))! = (2k+2)(2k+1)(2k)! \ge (2k+2)(2k)! > (2k+2)(2^kk!) = (k+1)2^{k+1}k! = 2^{k+1}(k+1)!.$ So $(2(k+1))! > 2^{k+1}(k+1)!$ which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$.

Base Case(s): At n = 0, $(1+x)^n = (1+x)^0 = 1$ and 1 + nx = 1 + 0 = 1. So $(1+x)^n \ge 1 + nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1+x)^n \ge 1 + nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1+x)^k \ge 1 + kx$. Notice that (1+x) is positive since x > -1. So $(1+x)^{k+1} \ge (1+x)(1+kx)$.

But $(1+x)(1+kx) = 1 + x + kx + kx^2 = 1 + (1+k)x + kx^2$.

And $1 + (1+k)x + kx^2 \ge 1 + (1+k)x$ because kx^2 is non-negative.

So $(1+x)^{k+1} \ge (1+x)(1+kx) \ge 1+(1+k)x$, and therefore $(1+x)^{k+1} \ge 1+(1+k)x$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \leq 2\sqrt{n}$

Hint: notice that $(\sqrt{n} - \sqrt{n+1})^2 \ge 0$. What does this imply about $2\sqrt{n}\sqrt{n+1}$?

Base Case(s): At n=1, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1 \le 2 = 2 \cdot n$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \le 2\sqrt{n}$ for $n = 1, 2, \dots, k$.

Inductive Step:

First, notice that $(\sqrt{k} - \sqrt{k+1})^2 \ge 0$. Multiplying this out gives us $k - 2\sqrt{k}\sqrt{k+1} + (k+1) \ge 0$. So $2k+1 \ge 2\sqrt{k}\sqrt{k+1}$.

Using this inequality plus the inductive hypothesis, we can compute

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \left(\sum_{p=1}^{k} \frac{1}{\sqrt{p}}\right) + \frac{1}{\sqrt{k+1}}$$

$$\leq 2\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{2\sqrt{k}\sqrt{k+1} + 1}{\sqrt{k+1}}$$

$$\leq \frac{(2k+1)+1}{\sqrt{k+1}} = \frac{2k+2}{\sqrt{k+1}} = \frac{2(k+1)}{\sqrt{k+1}} = 2\sqrt{k+1}$$