CS 173, Spring 2015 Examlet 10, Part A	_
Examlet 10 Part A	Τ,

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: $n^2 < 2^n$ for any integer $n \ge 5$.

Hint: first prove that $2n + 1 \le n^2$ for any integer $n \ge 5$. (This doesn't require induction.)

Base Case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Spring 2015 Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

 $10 \quad 11$

12

1

 $2 \quad 3$

4 5

(15 points) Use (strong) induction to prove the following claim:

9

Claim: $\sum_{k=n+1}^{2n} \frac{1}{k} \geq \frac{7}{12}$, for any integer $n \geq 2$.

Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

Base Case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Spring 2015 Examlet 10, Part A	NT
Examlet 10. Part A	1 N.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

$$f(1) = 0$$

$$f(n) = 1 + f(\lfloor n/2 \rfloor)$$
, for $n \ge 2$,

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $\lfloor x \rfloor \leq x$.

Base Case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

FIRST:					LAST:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
(15 points) Use (s	strong) induction	on to	prove	the fol	lowing	claim	ı:				
Claim: For all	integers $n \ge 2$,	(2n)!	$> 2^n n$	n!							
Base Case(s):											

FIRST:					LAST:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
points) Use (s	strong) induction	on to	prove	the fol	lowing	claim	ı:				
Claim: For any ase Case(s):	natural numbe	er n a	and an	y real i	number	x >	-1,	(1+a)	$(x)^n \ge$	1+	

CS 173, Spring 2015 Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

12

11

1 2 3

4 5

(15 points) Use (strong) induction to prove the following claim:

9

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \leq 2\sqrt{n}$

Hint: notice that $(\sqrt{n} - \sqrt{n+1})^2 \ge 0$. What does this imply about $2\sqrt{n}\sqrt{n+1}$?

Base Case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: