CS 173, Spring 2015 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

11

12

1

 $\mathbf{2}$ 3

4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that T is even.

$$T(0) = 5$$

$$T(n) = 3T(n-2) + n^2$$

9

(a) The height:

 $\frac{n}{2}$

(b) The number of leaves (please simplify):

$$3^{\frac{n}{2}} = (\sqrt{3})^n$$

(c) Value in each node at level k:

$$(n-2k)^2$$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $(3^n)^2$

10

 $0.001n^3$

 $30 \log n$

 $n\log(n^7)$

8n! + 18

 $3n^2$

10	$30\log n$	$n\log(n^7)$	$3n^2$	$0.001n^3$	$(3^n)^2$	8n! + 18

CS 173, S _I Examlet 1			ID:										
FIRST:	FIRST:						LAST:						
Discussion:	Monday	9 10	11	12	1	2	3	4	5				
1. (7 points) In cl to the reals wh this true? Brie	ose output val	ues are alv		_					_				
Solution:													
This is not true case that $\log(f)$			g(x) =	x^2 . Th	en log	g(g(x))))=:	$2\log($	f(x)	So it c	an't be the		
2. (8 points) Chec	ck the (single)	box that b	est cha	racteriz	es eac	ch ite	m.						
T(1) = d $T(n) = 2T(n/2)$	$\Theta(\log r)$				O(n)	√							
			($\Theta(n \log n)$	<i>1</i>) _		Θ((n^2)					
Suppose $f(n)$ i Will $g(n)$ be O	(0 () /		ľ	10		perha	${ m ips}$		У	es			
$n^{1.5}$ is	$\Theta(n^1$.414)	0	$O(n^{1.414})$			neitł	ner of	f these	·			
T(1) = d $T(n) = T(n - 1)$	1) + n	$\Theta(n)$	$\Theta(n)$	(e^2) $$	Θ	$(n \log$	n)		$\Theta(2^n$	·)			

CS 173, Spring 2015 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

11

12

1 2

3 4

5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

$$T(1) = 5$$

$$T(n) = 3T\left(\frac{n}{7}\right) + n^2$$

9

- (a) The height: $\log_7 n$.
- (b) The number of leaves (please simplify): $3^{\log_7 n} = 3^{\log_3 n \log_7 3} = n^{\log_7 3}$
- (c) Value in each node at level k: $(\frac{n}{7^k})^2$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$3n^2$$

 $\frac{n \log n}{7}$

 $(10^{10^{10}})n$

 $0.001n^3$

 $30\log(n^{17})$

8n! + 18

 $3^n + 11^n$

$30\log(n^{17})$)

 $(10^{10^{10}})n$

 $\frac{n \log n}{7}$ $3n^2$

 $0.001n^3$

 $3^n + 11^n$

8n! + 18

CS 173, Spring 2015 Examlet 10, Part B NETID:											
FIRST:				LAST	Γ:						
Discussion:	Monday	9 10) 11	12	1	2	3	4	5		
1. (7 points) Suppose means for f to Solution: The $0 \le f(x) \le cg(x)$ for every $x \ge k$	be $O(g)$. ere are positive $f(x)$				reals	s to t	he re	als.	Define	precisel	y what it
2. (8 points) Che	ck the (single) l	oox that l	best char	acterize	s eac	h ite	m.				
	oblem of size n of size n/m , let time when		est	< m [$> m$ [√ 		k = r $cm = r$	- -			
T(1) = d $T(n) = T(n/2)$	1+c			$\Theta(\log n)$ $(n \log n)$		√ _		O(n)			
3^n is	$\Theta(5^n$)	$O(5^n)$	$\sqrt{}$]	neith	er of	$ ag{these}$	е 🔲		
Suppose $f(n)$ is Will $g(n)$ be Θ			no)]	perha	aps [yes	s 🗸	

CS 173, Spring 2015 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

11

12

1

2 3 4

5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7$$

$$T(n) = nT(n-2) + n$$

9

(a) The height:

 $\frac{n-1}{2}$

(b) The number of leaves:

$$n(n-2)(n-4)\dots 5\cdot 3\cdot 1$$

(c) Value in each node at level k:

$$n-2k$$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$100 \log n$	$\log(2^n)$	$n\log(n^7)$	$(n^3)^7$	7^n	2^{3n}	42n!

· -	CS 173, Spring 2015 Examlet 10, Part B NETID:										
FIRST:		L	LAST:								
Discussion:	Monday	9 10	11	12	1 2	3	4	5			
~	ctions from the	reals to the	he reals, i	for whi	ch all o	utput	valu	es are		_	
$O(g(x))$, then $\log(f(x))$ is $O(\log(g(x)))$. Is this true? Briefly justify your answer. Solution: Yes, it is true. Suppose that $f(x)$ is $O(g(x))$. Then there are positive reals c and k such that $f(x) \leq cg(x)$ for all $x \geq k$. Then $\log(f(x)) \leq \log c + \log(g(x))$ for all $x \geq k$. Since $g(x)$ an increasing function and $\log c$ isn't, There is some $K \geq k$ such that $\log c \leq \log(g(x))$. So the $\log(f(x)) \leq 2\log(g(x))$ for all $x \geq K$. So $\log(f(x))$ is $O(\log(g(x)))$.											
-	d this much tec of big-O because					_			inequality	from	
2. (8 points) Che	ck the (single)	box that be	est charac	terizes	each ite	em.					
	g produce only ts and $f(n) \ll g$ $O(g(n))$?		no		perh	aps [yes	$\sqrt{}$		
T(1) = c $T(n) = 3T(n/3)$	(3) + n	$\Theta(n)$			$\Theta(n\log$	n)	$\sqrt{}$	$\Theta(2^n)$			
n!	$O(2^n$?)	$\Theta(2^n)$	n	either o	of thes	e	$\sqrt{}$			
n^{log_23} grows		faster t	than n^2		slower	than	n^2	$\sqrt{}$			
	at th	o como rot	$\rho \approx n^2$								