CS 173,	Spr	ing	2015
Examlet	10,	Pa	rt B

NETID:

LAST:

Discussion:

Monday

9 10

11

12

1

3

 $\mathbf{2}$

5

4

1. (9 points) Fill in key facts about the recursion tree for T, assuming that T is even.

$$T(0) = 5$$

$$T(n) = 3T(n-2) + n^2$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$(3^n)^2$$

10

 $0.001n^3$

 $30 \log n$

 $n\log(n^7)$

8n! + 18

 $3n^2$

L				

CS 173, Sp Examlet 10	oring 2015 0, Part B	N	ETII	D :								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (7 points) In class, Prof. Snape made the following claim about all functions g and h from the reals to the reals whose output values are always > 1. If $g(x) \ll h(x)$, then $\log(g(x)) \ll \log(h(x))$. Is this true? Briefly justify your answer.

2. (8 points) Check the (single) box that best characterizes each item.

T(1) = d		$\Theta(\log n)$		$\Theta(n)$	
T(n) = 2T(n/2) + c		$\Theta(n \log n)$		$\Theta(n^2)$	
Suppose $f(n)$ is $O(g(n))$ Will $g(n)$ be $O(f(n))$?).	no	perhaj	ps	yes
$n^{1.5}$ is	$\Theta(n^{1.414})$	$O(n^{1.414})$	r	neither of thes	se
T(1) = d $T(n) = T(n-1) + n$	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n \log n)$	a) $\Theta(2)$	n)

\mathbf{CS}	173,	Spri	ing	201	5
Exa	\mathbf{mlet}	10,	Pa	$\operatorname{rt} \mathrm{B}$	

NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

$$T(1) = 5 T(n) = 3T\left(\frac{n}{7}\right) + n^2$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$3n^2$$
 $\frac{n \log n}{7}$ $(10^{10^{10}})n$ $0.001n^3$ $30 \log(n^{17})$ $8n! + 18$ $3^n + 11^n$

г				

CS 173, S _l Examlet 1		111	ETII	D:								
FIRST:					LAS'	Г:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
1. (7 points) Suppose means for f to		g ar	e func	tions fr	rom the	e real	s to 1	the re	als.	Define	precise	ly what it
2. (8 points) Che	ck the (single)	box t	hat be	st char	acteriz	es eac	ch ite	em.				
Dividing a property problems, each	of size n/m ,				< m			k = r	n			
big- Θ running	time when			k	> m		}	km =	1			
T(1) = d					$\Theta(\log r)$	n) [Θ	O(n)			
T(n) = T(n/2)	+c			Θ	$(n \log r)$	<i>a</i>)		Θ((n^2)			
3^n is	$\Theta(5^n$	·) [$O(5^n)$		1	neith	er of	$ ag{these}$	е 🗌		
Suppose $f(n)$ i Will $g(n)$ be Θ				ne	o 🗌		perh	aps		ye	es 📗	

CC 179	Comina	2015		
CS 173,	Spring	2 013	NETID.	
CS 173, Examlet	10. Pa	rt B	METID:	

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7 T(n) = nT(n-2) + n$$

- (a) The height:
- (b) The number of leaves:
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

42n! 7^n $100 \log n$ $n \log(n^7)$ 2^{3n} $\log(2^n)$ $(n^3)^7$

CS 173, Spring 2015 Examlet 10, Part B NETID:											
FIRST:					LAST:						
Discussion:	Monday	9 10	11	12	1	2	3	4	5		
	found the follotions from the $\log(f(x))$ is $O(\log x)$	reals to the	he reals	, for w	hich	all ou	itput	valu	es are		_
,	g produce only ts and $f(n) \ll g$		est chara			ch iter	Г		ye:	5	
T(1) = c $T(n) = 3T(n/3)$	(3) + n	$\Theta(n)$	$\Theta(n^2)$)	$\Theta($	$n \log r$	n) [$\Theta(2^n)$		
n!	$O(2^n)$)	$\Theta(2^n)$		neit	her of	f thes	e [
n^{log_23} grows	at the	faster t			sl	ower	than	n^2			