CS 173, Spring 2015 Examlet 11, Part B NETID:							
FIRST: LAST:							
Discussion: Monday 9 10 11 12 1 2 3 4 5							
(15 points) Check the (single) box that best characterizes each item.							
$\Theta(n^2) \qquad \Theta(n^3) \qquad \Theta(n\log n) \qquad \\ \text{Karatsuba's integer} \\ \text{multiplication algorithm} \qquad \Theta(n^{\log_2 3}) \qquad \boxed{\checkmark} \qquad \Theta(n^{\log_3 2}) \qquad \qquad \Theta(2^n) \qquad $							
Determining whether a graph with n edges is connected. polynomial $\sqrt{}$ exponential in NP							
The running time of the Towers of Hanoi solver $\Theta(\log n)$ $\Theta(n \log n)$ $\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(2^n)$ $O(2^n)$							
Algorithm A takes 2^n time. On one input, A takes x time. How long will it take if I double the input size? $2^x extstyle 2^x extstyle x^2 extstyle \sqrt{}$							
The running time of mergesort is $O(n^3)$. True $\boxed{\hspace{0.1cm}}$ False $\boxed{\hspace{0.1cm}}$							

CS 173, Spring 2015 Examlet 11, Part B NETID:								
FIRST: LAST:								
Discussion: Monday 9 10 11 12 1 2 3 4 5								
(15 points) Check the (single) box that best characterizes each item.								
The running time of the Towers of Hanoi solver $\Theta(\log n)$ $\Theta(n\log n)$ $\Theta(n^2)$ $\Theta(2^n)$ $Q(2^n)$								
The running time of Karatsuba's algorithm is recursively defined by $T(1)=d$ and $T(n)= $								
Finding the chromatic number of a graph proven true proven false with n nodes requires $\Theta(2^n)$ steps. not known								
Algorithm A takes n^5 time. On one input, A takes x time. How long will it take if I double the input size? $2x$ $32x$ $\sqrt{}$ x^5 $\boxed{}$								
Producing all parses for a sentence. polynomial $ \bigcirc $ exponential $ \bigcirc $ in NP $ \bigcirc $								

CS 173, Spring 2015 Examlet 11, Part B NETID:							
FIRST: LAST:							
Discussion: Monday 9 10 11 12 1 2 3 4 5							
(15 points) Check the (single) box that best characterizes each item.							
The running time of binary search is recursively defined by $T(1)=d$ and $T(n)=$ $T(n/2)+c$ $T(n/2)+c$ $T(n/2)+c$ $T(n/2)+c$							
Problems in NP need exponential time proven true proven false not known $\sqrt{}$							
The running time of mergesort is $O(n^3)$. True $\boxed{\hspace{0.1cm}}$ False $\boxed{\hspace{0.1cm}}$							
Algorithm A takes 2^n time. On one input, A takes x time. How long will it take if I double the input size? $2x x^2 $							
If a yes/no problem is in NP, a "yes" answer always has a succinct justification. true $\sqrt{}$ false $\boxed{}$ not known $\boxed{}$							

FIRST:					LAST	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
(6 points) Fill in a sorted list of nu			nis recu	ırsive	algorith	ım fo	r retu	ırning	g the	locati	on of	a numbe
$\operatorname{search}(p,q,k)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\leq q$										
$m := \lfloor (p - 1) \rfloor$	$+q)/2\rfloor$											
if $k = a_m$	then return m											
else if $(k \cdot$	$< a_m)$ and $p < r$	n the	en									
	$> a_m$) and $q > r$											
else return	n -1 \\ i.e. err	or, no	ot foun	ıd								
(9 points) Check	the (single) box	that	best o	charac	cterizes o	each	item.					
If a yes/no proble always has a succ		-	answe		crue ,	<u>/</u>	fal	se [no	t knov	vn
The running time	e of mergesort is	s O(n	³).	Tru			False					

slower than n^2 at the same rate as n^2

faster than n^2

CS 173, Spring 2015 Examlet 11, Part B NETID:													
FIRST:					LAS	T :							
Discussion:	Monday	9	10 1	1	12	1	2	3	4	5			
(15 points) Check	the (single) bo	ox tha	t best ch	ara	ıcterize	es each	item	l .					
Problems in class require exponential		NP)	8	ne alwa		√ 		netim					
The running time	of binary searc	ch	•		$(\log n)$ $(\log n)$			$\Theta(n)$ $\Theta(n^2)$					
The Marker Malcan be solved in time.	~ -	pro	ven true			prove	en fal	se		n	ot kno	own	V
T(1) = d $T(n) = 3T(n/2) + 3T(n/2$	- n		$\Theta(n)$ $\Theta(n^{\log n})$	^{3 2})			$n \log_2(n (n \log_2(n (n \log_2(n (n ($	- ,			$\Theta(n^2)$ $\Theta(2^n)$]
Producing all par for a sentence.	ses	pol	ynomial			expor	nentia	al [\checkmark	iı	ı NP		

CS 173, Spring 2015 Examlet 11, Part B NETID:							
FIRST:	LAST:						
Discussion: Monday 9 10	0 11 12 1 2 3 4 5						
(15 points) Check the (single) box that b	pest characterizes each item.						
$\Theta(n^2)$ Karatsuba's integer multiplication algorithm $\Theta(n^{log_23})$							
The Travelling Salesman problem can be solved in polynomial time.	n true						
The running time of Karatsuba's algorithm is recursively defined by $T(1)=d$ and $T(n)=$							
n^{log_23} grows faster than n^2	slower than n^2 $\sqrt{}$ at the same rate as n^2 $\boxed{}$						
Producing all parses for a sentence. polynomial polynom	omial exponential $\sqrt{}$ in NP						