CS 173, Spring 2015 Examlet 11, Part B NETID:						
FIRST:	LAST:					
Discussion: Monday 9 10 11	12 1 2 3 4 5					
(15 points) Check the (single) box that best chara	cterizes each item.					
Karatsuba's integer	$\Theta(n^3)$ $\Theta(n \log n)$ $\Theta(n^{\log_3 2})$ $\Theta(2^n)$					
Determining whether a graph with n edges is connected. polynomial	exponential in NP					
The running time of the Towers of Hanoi solver $\Theta(\log n)$	$\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(2^n)$					
Algorithm A takes 2^n time. On one input, A takes x time. How long will it take if I double the input size? $2x$	2^x $\qquad \qquad x^2$					
The running time of mergesort is $O(n^3)$.	e False					

CS 173, Spring 2015 Examlet 11, Part B NETID:							
FIRST: LAST:							
Discussion: Monday 9 10 11 12 1 2 3 4 5							
(15 points) Check the (single) box that best characterizes each item.							
The running time of the Towers of Hanoi solver $\Theta(\log n)$ $\Theta(n\log n)$ $\Theta(n^2)$ $\Theta(2^n)$ $\Theta(2^n)$							
The running time of Karatsuba's algorithm $2T(n/2) + cn$ $3T(n/2) + cn$ is recursively defined by $T(1) = d$ and $T(n) = 4T(n/2) + cn$ $4T(n/2) + c$							
Finding the chromatic number of a graph proven true proven false with n nodes requires $\Theta(2^n)$ steps.							
Algorithm A takes n^5 time. On one input, A takes x time. How long will it take if I double the input size? $2x$ $32x$ $32x$ x^5							
Producing all parses for a sentence. polynomial exponential in NP							

CS 173, Spring 2015 Examlet 11, Part B NETID:										
FIRST:		LAST:								
Discussion: Monday 9 10	11	12	1	2	3	4	5			
(15 points) Check the (single) box that be	st chara	cterizes	s each	item						
The running time of binary search is recursively defined by $T(1)=d$ and $T(n)=$,	n/2) + $n/2) +$. , ,	+ cn + cn			
Problems in NP need exponential time proven true		prov	en fal	se		n	ot knov	vn		
The running time of mergesort is $O(n^3)$.	True	е 🔲	Ι	False						
Algorithm A takes 2^n time. On one input, A takes x time. How long will it take if I double the input size?	;	2^x		x^2	2					
If a yes/no problem is in NP, a "yes" answ always has a succinct justification.		rue		false	e		not k	nown		

FIRST:					LAST	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
(6 points) Fill in sorted list of nur			nis recu	ursive	algorith	nm fo	r retu	ırninş	g the	loca	tion of	a nı
$\operatorname{search}(p,q,k)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\leq q$										
$m := \lfloor (p -$	$+q)/2\rfloor$											
if $k = a_m$	then return m											
else if $(k < 1)$	$< a_m)$ and $p < r$	m the	en									
else if $(k > 1)$	$> a_m$) and $q > r$	m the	en									
else return	$1 - 1 \setminus i.e. err$	or, no	ot foun	nd								
(9 points) Check	the (single) box	k that	best o	charac	eterizes	each	item.					
If a yes/no proble always has a succ		-	answe		rue _		fals	se [no	ot know	vn
	e of mergesort is	- O(3)						_			

CS 173, Spring 2015 Examlet 11, Part B NETID:															
FIRST:						LAST:									
Discussion:	Monday	9	10	11	12	1	2	3	4	5					
(15 points) Check	the (single) be	ox tha	at best	chara	acterize	es eacl	ı item	1.							
Problems in class require exponenti		NP)		ne alw	ver			netim knov	_						
The running time	e of binary sear	eh			$(\log n)$ $n \log n$			$\Theta(n$ $\Theta(n^2$							
The Marker Macan be solved itime.	U -	pro	oven tri	ue [prov	en fa	lse [ne	ot kno	wn [
T(1) = d $T(n) = 3T(n/2) - 3T(n/2$	+ n		$\Theta(n)$ $\Theta(n)$	$\log_3 2$			$\Theta(n \log n)$	- ,			$\Theta(n^2)$ $\Theta(2^n)$				
Producing all par for a sentence.	rses	po	lvnomia	al 「		expo	$_{ m nenti}$	al [in	NP				

CS 173, Spring 2015 Examlet 11, Part B NETID:						
FIRST:	LAST:					
Discussion: Monday 9 10 11	1 12 1 2 3 4 5					
(15 points) Check the (single) box that best cha	racterizes each item.					
$\Theta(n^2)$ Karatsuba's integer multiplication algorithm $\Theta(n^{log_23})$	$\Theta(n^3)$ $\Theta(n \log n)$ $\Theta(n^{\log_3 2})$ $\Theta(2^n)$					
The Travelling Salesman problem can be solved in polynomial time. proven true	proven false not known					
is recursively defined by $T(1) = d$ and	T(n/2) + cn $3T(n/2) + cn$ $T(n/2) + cn$ $4T(n/2) + c$					
n^{log_23} grows faster than n^2 slower	er than n^2 at the same rate as n^2					
Producing all parses for a sentence. polynomial	exponential in NP					