CS 173, Spring 2015

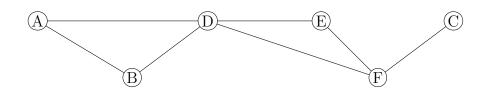
NETID: Examlet 12, Part B

FIRST:

LAST:

Discussion: Monday 9 10 11 121 2 3 4 5

Graph G is at right. V is the set of nodes in G.



Define $f: V \to \mathbb{P}(V)$ by $f(p) = \{n \in V : \deg(n) \le \deg(p)\}$, where $\deg(n)$ is the degree of node n. Let $P = \{ f(p) \mid p \in V \}.$

(a) (6 points) Fill in the following values:

f(A) =Solution: $\{A, B, C, E\}$

f(C) =Solution: $\{C\}$

P =Solution: $\{\{C\}, \{A, B, C, E\}, \{A, B, C, E, F\}, \}, \{A, B, C, D, E, F\}\}\}$

(b) (7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

Solution: No, it is not a partition. It doesn't contain the empty set (good), and it covers all of V(good), but there is partial overlap among its members (bad).

(c) (2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

Solution: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

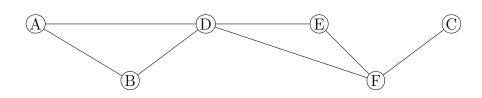
	CS 173, Spring 2015 Examlet 12, Part B NETID:
	FIRST: LAST:
	Discussion: Monday 9 10 11 12 1 2 3 4 5
	$f: \mathbb{R} \to \mathbb{P}(\mathbb{R})$ be defined by $f(x) = \{p \in \mathbb{R} \mid \lfloor x \rfloor = \lfloor p \rfloor\}$ $f(x) = \{f(x) \mid (x) \in \mathbb{R}\}.$
(a)	6 points) Answer the following questions: $f(0) = $ Solution: $[0,1) = \{x \in \mathbb{R} : 0 \le x < 1\}$ Describe (at a high level) the elements of $f(7)$: Solution: All the real numbers whose floor is 7. The cardinality of (aka the number of elements in) T is: Solution: infinite
(b)	7 points) Is T a partition of \mathbb{R} ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition. Solution: Yes. These intervals cover all of the real line, none of them is empty, and there is no partial overlap.
(c)	2 points) Check the (single) box that best characterizes each item.
	$\{A \subseteq \mathbb{Z}_4 : A \text{ is even}\} $ 1

CS 173, Spring 2015	NETID.
Examlet 12, Part B	METID:

DIDGE	T A COT
FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Graph G is at right. V is the set of nodes in G. $M = \{0, 1, 2, 3, 4\}$



Define $f: M \to \mathbb{P}(V)$ by $f(n) = \{p \in V : d(p, F) = n\}$, where d(a, b) is the distance between a and b. Let $P = \{f(n) \mid n \in M\}$.

- (a) (6 points) Fill in the following values:
 - f(0) =Solution: $\{F\}$
 - f(1) =Solution: $\{C, D, E\}$
 - P =Solution: $\{\emptyset, \{F\}, \{C, D, E\}, \{A, B\}\}$
- (b) (7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

Solution: No, P is not a partition of V. The subsets cover all of V with no partial overlap. However, P contains the empty set, since $f(3) = f(4) = \emptyset$.

(b) (2 points) Check the (single) box that best characterizes each item.

$\mathbb{P}(A) \cap \mathbb{P}(B) = \emptyset$	true for all sets	true if $A \cap B = \emptyset$	
	false for all sets		

FIRST:		LAST:	
Discussion:	Monday 9 10	11 12 1 2 3 4 5	
Graph G is at right V is the set of not E is the set of edg ab (or ba) is the E	des.	© d g	(k) (h)j
Let $f: V \to \mathbb{P}(E)$	be defined by $f(n) = \{e$	$e \in E \mid n \text{ is an endpoint of } e$ }. And let $T =$	$= \{f(n) \mid n \in V\}$
) (6 points) Fill in	the following values:		
V = Solution:	8		
f(d) = Solution	$: \{cd, ad, dg\}$		
f(h) = Solution	: {hj}		
, –	partition of E ? For each besn't satisfy that conditi	of the conditions required to be a partitionion.	on, briefly explain
so T contains the	e empty set. Also, there	T contains all edges in E . However, $f(k)$ is partial overlap between the subsets, e.	
are different but	share the edge ad.		
	<u> </u>	st characterizes each item.	

CS 173, Spring 20 Examlet 12, Part	I IN H; I	ID:							
FIRST:		L	AST:						
Discussion: Monda	y 9 10) 11 1	12 1	2	3	4	5		
(a) (9 points) Suppose that A Also suppose that $A_1 \cap A_2 \cap \dots$ why or why not.									
Solution: P is not necessar even when some pairs of (distinct			issue is	that A	$A_1 \cap A$	$a_2 \cap \dots$	$.\cap A_n =$	= Ø can l	be true
(b) (6 points) Check the (sin	gle) box that	best charac	cterizes e	each it	em.				
$\mathbb{P}(A)\cap\mathbb{P}(B)=\mathbb{P}(A\cap B)$	true for a	all sets $\sqrt{}$	' trı	ue for	some	sets			
	false for a	all sets]						
$\{\{a,b\},c\} = \{a,b,c\}$	Tr	ue	False	$\sqrt{}$					
		a ratio	nal		a pow	ver se	t of rati	onals	
If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then $f(3)$ is	as	set of ration	als $\sqrt{}$				unde	efined	

	CS 173, Spring 2015 Examlet 12, Part B NETID:
	FIRST: LAST:
	Discussion: Monday 9 10 11 12 1 2 3 4 5
	Suppose that $A = \{2, 3, 5, 13, 17\}$. Let's define a function $F : A \to \mathbb{P}(A)$ and a set S as follows:
	$F(x) = \{ y \in A \mid y \text{ is a factor of } x \}$ $S = \{ F(x) \mid x \in A \}$
(a)	(2 points) List the members of $F(13)$. Solution: 13
(b)	(7 points) Is S a partition of A ? Why or why not?
	Solution: Yes. S is a partition of A . Notice that $f(n) = \{n\}$ for all n in this particular set A . So element of A is in exactly one member of S and S cannot contain the empty set.
(c)	(6 points) Check the (single) box that best characterizes each item.
	$\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(A \cup B)$ true for all sets $\ $ true for some sets $\ $
	false for all sets
	$\mathbb{P}(\emptyset) \hspace{1cm} \emptyset \hspace{1cm} \boxed{\hspace{1cm}} \{\emptyset\} \hspace{1cm} \boxed{\hspace{1cm}} \{\emptyset, \{\emptyset\}\} \hspace{1cm} \boxed{\hspace{1cm}}$
	Pascal's identity states that $\binom{n}{k}$ is equal to $\binom{n-1}{k} + \binom{n-1}{k-1}$ $\boxed{\checkmark}$ $\binom{n-1}{k} + \binom{n-1}{k+1}$ $\boxed{\qquad}$ $\binom{n-1}{k} + \binom{n-2}{k}$ $\boxed{\qquad}$