CS 173, Spring 2015 Examlet 12, Part B

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Graph G is at right. V is the set of nodes in G.

Define $f: V \to \mathbb{P}(V)$ by $f(p) = \{n \in V : \deg(n) \le \deg(p)\}$, where $\deg(n)$ is the degree of node n. Let $P = \{f(p) \mid p \in V\}$.

(a) (6 points) Fill in the following values:

$$f(A) =$$

$$f(C) =$$

$$P =$$

(b) (7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

(c) (2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

	CS 173, Spring 2015 Examlet 12, Part B NETID:
	FIRST: LAST:
	Discussion: Monday 9 10 11 12 1 2 3 4 5
	$f: \mathbb{R} \to \mathbb{P}(\mathbb{R})$ be defined by $f(x) = \{p \in \mathbb{R} \mid \lfloor x \rfloor = \lfloor p \rfloor \}$ of $T = \{f(x) \mid (x) \in \mathbb{R}\}.$
(a)	(6 points) Answer the following questions: $f(0) =$
	Describe (at a high level) the elements of $f(7)$:
	The cardinality of (aka the number of elements in) T is:
(b)	(7 points) Is T a partition of \mathbb{R} ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.
(c)	(2 points) Check the (single) box that best characterizes each item.
	$ \{A \subseteq \mathbb{Z}_4 : A \text{ is even}\} $ 1 6 7 8 infinite

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

 $\mathbf{2}$

4

5

3

Graph G is at right.

V is the set of nodes in G.

 $M = \{0, 1, 2, 3, 4\}$

1

Define $f: M \to \mathbb{P}(V)$ by $f(n) = \{p \in V : d(p, F) = n\}$, where d(a, b) is the distance between a and b. Let $P = \{f(n) \mid n \in M\}$.

(a) (6 points) Fill in the following values:

$$f(0) =$$

$$f(1) =$$

P =

(b) (7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

(b) (2 points) Check the (single) box that best characterizes each item.

$$\mathbb{P}(A) \cap \mathbb{P}(B) = \emptyset$$

true for all sets
false for all sets

\mathbf{S}	
\mathbf{S}	

true if $A \cap B = \emptyset$

FIRST:				$\overline{\mathbf{L}\mathbf{A}}$	ST:							
Discussion: M	Ionday	9 10	11	12	2	1	2	3	4	5		
(a) (9 points) Suppose so suppose that $A_1 \cap A_2$ by or why not.												
(b) (6 points) Check	the (single)	box that b	oest ch	aract	erize	s eac	ch ite	em.				
$\mathbb{P}(A) \cap \mathbb{P}(B) = \mathbb{P}(A \cap$	(B)	true for all	sets		t	true	for s	some	sets			
		false for all	sets									
$\{\{a,b\},c\} = \{a,b,c\}$		True	е]	False	e [
If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then	f(3) is		a ra	ationa	al [8	a pow	ver se	et of r	ationals	3
		a set	t of ra	tional	ls					ur	ndefined	-

\mathbf{CS}	173,	\mathbf{Spr}	ing	2015
Exa	mlet	12.	$\mathbf{p}_{\mathbf{a}}$	rt B

NETID:		
--------	--	--

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Suppose that $A = \{2, 3, 5, 13, 17\}$. Let's define a function $F : A \to \mathbb{P}(A)$ and a set S as follows:

$$F(x) = \{ y \in A \mid y \text{ is a factor of } x \}$$

$$S = \{ F(x) \mid x \in A \}$$

- (a) (2 points) List the members of F(13).
- (b) (7 points) Is S a partition of A? Why or why not?

(c) (6 points) Check the (single) box that best characterizes each item.

$$\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(A \cup B)$$
 true for all sets true for some sets false for all sets

$$\mathbb{P}(\emptyset) \hspace{1cm} \emptyset \hspace{1cm} \{\emptyset\} \hspace{1cm} \{\emptyset\}\} \hspace{1cm} \{\emptyset, \{\emptyset\}\} \hspace{1cm} [$$

Pascal's identity states that
$$\binom{n}{k}$$
 is equal to

$$\binom{n-1}{k} + \binom{n-1}{k-1} \qquad \qquad \binom{n-1}{k} + \binom{n-1}{k+1} \qquad \qquad \binom{n-1}{k} + \binom{n-2}{k} \qquad \qquad \boxed{}$$