| CS 173, S _I
Examlet 1 | oring 2018
3, Part A | 5
N | ETII | D: | | | | | | | | | | |-------------------------------------|-------------------------|--------|------|----|-------|---|---|---|---|---|--|--|--| | FIRST: | TIRST: | | | | LAST: | | | | | | | | | | Discussion: | Monday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | | | | (15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s. A group of Psychology researchers need to generate text consisting of one or more repetitions of "eat X," where X is one of the words "cherry", "curry", "berry" and "cheese." The lattice should allow one or more spaces (written as \square) between each pair of words. The researchers weren't very clear about whether spaces were allowed at the start/end of the text, so you can do whatever you find easiest to implement. Draw a deterministic phone lattice that models these text sequences, using no more than 19 states and, for maximum credit, no more than 16.