Examlet 13, Pa	- IIN	ETID:					
FIRST:			LAST	Γ:			
Discussion: Mo	nday 9	10 1	$egin{array}{cccc} 1 & 12 \end{array}$	1 2	3 4	4 5	
(5 points) Let's say that distinct (finite) planar grap	U -				•		rphic. Is the set of
Solution: This set is of distinct graphs with that m is countable.			-				
(10 points) Check the (s	single) box the	at best cha	aracterizes	each iter	n.		
The set of all finite-ler strings of decimal digits	0		countabl	y infinite	$\sqrt{}$	unco	untable
$ A \times A > A $	true		false] tru	e for son	ne sets	$\sqrt{}$
Every function from the the integers has a correstinite-length formula.	_	tı	rue	false	$\sqrt{}$	not k	nown
The set of all (finite) phousing the 26 letters A,		finite	co	untably i	nfinite	$\sqrt{}$	uncountable
The set containing all further from the set of even integers	•	finite	0	ountably	infinite		uncountable \(\sqrt{1}\)

CS 173, Spring 2015 Examlet 13, Part B	NETII):					
FIRST:		LAS	ST:				
Discussion: Monday	9 10	11 12	1	2 3	4 5		
(5 points) A "pretty wheel" grap {red, green, blue, violet, yellow}. Two or if they have the same number of a countable or uncountable? Briefly ju	o pretty wh nodes but a	eels are dis different co	tinct if t	hey have	a differ	ent number o	f node
Solution: This is countable. For So the whole set is the union of countable.		*				olor the nodes	of W_n
(10 points) Check the (single) be	x that best	characteriz	es each it	tem.			
There are mathematical function don't have a finite formula.	ons that	true 🗸	fal	se	not	known	
The rational numbers have to same cardinality as the reals.	he true	fa	alse $\sqrt{}$	no no	t known	ı 🗌	
The set of all finite sequences of Chinese characters.	finite	cc	ountably i	infinite	$\sqrt{}$	uncountable)
If $f: A \to B$ is one-to one	A < B		$\leq B $	$\sqrt{}$	A = A	B	
$\mathbb{P}(\mathbb{N})$ finite	cot	ıntably infi	nite	un	countab	le $\sqrt{}$	