CS 173, Fa Examlet 1,		NE	TII) :							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every computer game g, if g has trendy music or g has an interesting plotline, then g is not cheap.

2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dinosaur d, if d is huge, then d is not a juvenile and d is a sauropod.

3. (5 points) Suppose that x is an integer and $x^2 + 3x - 18 < 0$. What are the possible values of x? Show your work.

CS 173, Fa Examlet 1,		NE	TII) :							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tiger k, if k is orange, then k is large and k is not friendly.

2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

There is a relish r such that r is orange but r is not spicy.

3. (5 points) Describe all (real) solutions to the equation $(x+y)^2 \le x^2 + y^2$. Show your work.

CS 173, Fa Examlet 1,		NE	TII) :							
FIRST:					LA	AST:					
Discussion:	Thursday	$\overline{2}$	3	4	5	Friday 9	10	11	12	1	2

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every book b, if b is blue or b is not heavy, then b is not a math book.

2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tiger k, if k is orange, then k is large and k is not friendly.

3. (5 points) Recall that $i = \sqrt{-1}$. Compute the value of (1+i)(2-i)(3-i). Show your work.

\mathbf{CS}	173,	Fal	11	201	6
Exa	mlet	1,	\mathbf{P}	art	A

NETID:		

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) Show that the following two expressions are not logically equivalent, by giving specific values of p, q, and r for which they produce different values.

$$(p \to q) \wedge r$$

$$p \to (q \wedge r)$$

2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dog d, if d is a terrier, then d is not large and d is noisy.

3. (5 points) Solve $16p^2 - 81 = 0$ for p. Simplify your answer and show your work.

\mathbf{CS}	173 ,	Fal	11	201	6
Exa	mlet	1,	F	Part	A

NETID:		

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tree t, if t grows in Canada, then t is not tall or t is a conifer.

2. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by G(x) = x - 5 and $H(x) = \sqrt{x + 1}$. Compute the value of H(H(G(13))), showing your work.

3. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$p \wedge (p \vee q) =$$

р	q	$p \lor q$	$p \wedge (p \vee q)$
Τ	Τ		
Τ	F		
F	Τ		
F	F		

\mathbf{CS}	173 ,	Fal	11	201	6
Exa	mlet	1,	F	Part	A

NETID:	

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every relish r, if r is orange and r is not spicy, then r is pungent.

2. (5 points) Suppose that F and G are functions whose inputs and outputs are real numbers, defined by F(x) = x - 6 and $G(x) = x^2 + 8$.

Compute the value of $\frac{F(F(G(2)))}{F(\pi)}$. Simplify your answer and show your work.

3. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$r \to (q \to r) =$$

q	r	$q \rightarrow r$	$r \to (q \to r)$
Τ	Τ		
Т	F		
F	Τ		
F	F		