CS 173, Fa		NE	TID:	;								
FIRST:					$\mathbf{L}\mathbf{A}$	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
1. (5 points) Let remainder r of	a and b be integ a divided by b .									quotier	nt q a	$\operatorname{nd} \operatorname{the}$
2. (6 points) Use	the Euclidean a	lgorith	nm to o	com	pute	gcd(7839,	1474	. Sho	w youi	work.		
3. (4 points) Chec	k the (single) bo	ox tha	t best	chai	racte	rizes each	item					
$-7 \equiv 13 \pmod{8}$	5) true		fa	ılse								
$\gcd(p,q) = \frac{1}{\text{lcm}}$ $(p \text{ and } q \text{ positive})$	$\frac{pq}{(p,q)}$ we integers)	al	ways			sometime	es [neve	r		

FIRST:					LA	ST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
1. (5 points) Is the showing that it		true	? Info	ormal	lly ex	plain why it i	s false,	or give	a concı	rete e	xam
	n integer n such	that	$n \equiv 2$	2 (mo	od 6)	and $n \equiv 1$ (1)	mod 9)?	•			
2. (6 points) Use	the Euclidean al	lgorit	$^{ m hm}$ to	o com	ıpute	$\gcd(1702, 12)$	21). Sh	ow you	r work.		
2. (6 points) Use	the Euclidean al	lgorit	hm to	o com	npute	$\gcd(1702, 12)$	21). Sh	ow you	r work.		
2. (6 points) Use	the Euclidean al	lgorit	hm to	o com	npute	$\gcd(1702, 12)$	21). Sh	ow you	r work.		
2. (6 points) Use	the Euclidean al	lgorit	hm te	o com	npute	gcd(1702, 12	21). Sh	ow you	r work.		
2. (6 points) Use	the Euclidean al	lgorit	hm to	o con	npute	gcd(1702, 12	21). Sh	ow you	r work.		
2. (6 points) Use	the Euclidean al	lgorit	.hm to	o con	npute	gcd(1702, 12	21). Sh	ow you	r work.		
2. (6 points) Use 3. (4 points) Chec								ow you	r work.		

CS 173, Fa Examlet 2		NE	ETII) :								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
1. (5 points) Is t example showing	the following clang that it is not.	im tr	ue? l	Inforn	nally	explain wh	y it	is, or	give a	a concr	ete c	ounte
_	or all non-zero in	tegers	a an	nd b , i	$f a \mid a$	b and $b \mid a$,	then	a = 0	b.			
2. (6 points) Use	the Euclidean a	lgorit	hm to	o con	npute	$\gcd(221,12)$	224).	Show	your	work.		
3. (4 points) Chec	ck the (single) be	ox tha	at bes	st cha	racte	rizes each i	tem.					
For any positiv	\mathbf{r} e integers p and	q,					\neg	c 1		7		
if lcm(p,q) = per	q, then p and q ar	re rela	tively	y prin	ne.	true		fals	se	j		
$-7 \mid 0$	true	fa	alse									

FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Frida	y 9	10	11	12	1	2
1. (5 points) Is the showing that it		ı true	e? Info	ormal	ly ex	plain why	y it is	false, o	or give	a conci	rete e	xam
	n integer n such	that	$n \equiv 2$	2 (mc	od 6)	and $n \equiv$	5 (m	od 15)	?			
2. (6 points) Use	the Euclidean a	lgorit	thm to	o com	npute	$\gcd(221)$, 1224). Show	v your	work.		
2. (6 points) Use	the Euclidean al	lgorit	chm to	o com	npute	gcd(221	, 1224). Show	v your	work.		
2. (6 points) Use	the Euclidean al	lgorit	chm to	o com	ıpute	gcd(221,	, 1224). Shov	v your	work.		
2. (6 points) Use	the Euclidean al	lgorit	thm to	o com	ıpute	gcd(221,	, 1224). Show	v your	work.		
2. (6 points) Use	the Euclidean al	lgorit	hm to	o com	ipute	gcd(221	, 1224). Shov	v your	work.		
2. (6 points) Use	the Euclidean a	lgorit	chm to	o com	ıpute	gcd(221	, 1224). Show	v your	work.		
2. (6 points) Use 3. (4 points) Chec									v your	work.		
	ck the (single) be positive and								v your	work.		

CS 173, Fa Examlet 2,		NE	ETII	D:								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Frida	y 9	10	11	12	1	2
1. (5 points) Is the showing that it		n true	? Inf	orma	lly ex	plain why	it is	false, o	or give	a conci	rete e	xamp
	ositive integers a	<i>a</i> , <i>b</i> , a	$\operatorname{nd} c$,	if $a \mid$	c and	$d b \mid c$, th	en ab	c				
2. (6 points) Use	the Euclidean a	lgorit	hm t	o con	npute	$\gcd(535,$	1819). Show	v your	work.		
3. (4 points) Chec	ck the (single) be	ox tha	at bes	st cha	$\operatorname{ract}\epsilon$	erizes each	ı item	1.				
If a and b are properties $r = \text{remainder}(b, r) = 0$	(a,b),			1	true		fal	se				
$-7 \equiv 13 \pmod{8}$	5) true			false]						

CS 173, Fa Examlet 2		NE	ETII) :								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
. (5 points) Is t	the following claing that it is not.	im tr	ue? l	Inforn	nally	explain w	hy i	t is, or	give a	a conci	cete c	ounte
Claim: Fo $gcd(a, c) >$	or all positive inte > 1.	egers	a, b,	and o	c, if g	$\operatorname{cd}(a,bc) >$	· 1, t	then go	$\operatorname{ed}(a,b)$	> 1 as	nd	
. (6 points) Use	the Euclidean a	lgorit	thm t	o con	npute	$\gcd(2385,$	636)). Show	w your	work.		
6. (4 points) Chec	ck the (single) bo	ox the	at bes	st cha	aracte	rizes each	item	1.				
If p , q , and k a integers, then g	_	q		pq	!	$\bigg] \qquad pqk$			$q \gcd(p$	(p,k)		
0 7	true		false		Ţ							