NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{\alpha(2, -4) + (1 - \alpha)(-2, 5)\} \mid \alpha \in \mathbb{R}\}\$

 $B = \{(a,b) \in \mathbb{R}^2 \mid b \le -1\}$

 $C = \{(p,q) \in \mathbb{R}^2 \mid p \ge 0\}$

Prove that $A \cap B \subseteq C$.

Solution: Let (x,y) be a 2D point and suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$.

Since $(x, y) \in A$, $(x, y) = \alpha(2, -4) + (1 - \alpha)(-2, 5)$ where α is a real number. So $x = 2\alpha - 2(1 - \alpha) = 4\alpha - 2$ And $y = -4\alpha + 5(1 - \alpha) = 5 - 9\alpha$

Since $(x,y) \in B$, $y \le -1$. So we have $y = 5 - 9\alpha \le -1$. So $6 \le 9\alpha$. So $\alpha \ge \frac{2}{3}$.

So then $x = 4\alpha - 2 \ge 4\frac{2}{3} - 2 = \frac{8}{3} - 2 = \frac{2}{3}$.

So $x \ge 0$ and therefore $(x, y) \in C$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 + 4y + 4 \le 100\}$

 $B = \{(p,q) \in \mathbb{R}^2 \mid p \le -6\}$

 $C = \{(a,b) \in \mathbb{R}^2 \mid b \le 7\}$

Prove that $A \cap B \subseteq C$.

Solution:

Let $(x,y) \in \mathbb{R}^2$. Suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. So $x^2 + y^2 + 4y + 4 \le 100$ and $x \le -6$.

Since $x \le -6, x^2 \ge 36$.

Then $y^2 + 4y + 4 \le 100 - x^2 \le 100 - 36 = 64$.

Notice that $y^2 + 4y + 4 = (y+2)^2$. So we have $(y+2)^2 \le 64$. This means $y+2 \le 8$. So $y \le 6 \le 7$.

Since $y \leq 7$, $(x, y) \in C$, which is what we needed to prove.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{(a, b) \in \mathbb{R}^2 : a = 3 - b^2\}$

 $B = \{(x,y) \in \mathbb{R}^2 \ : \ |x| \ge 1 \text{ or } |y| \ge 1\}$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

Solution: Suppose that (a,b) is an element of A. Then, by the definition of A, $(a,b) \in \mathbb{R}^2$ and $a=3-b^2$.

Consider two cases, based on the magnitude of b:

Case 1: $|b| \ge 1$. Then (a, b) is an element of B. (Because it satisfies one of the two conditions in the OR.)

Case 2: |b| < 1. Then $b^2 < 1$. Then $a = 3 - b^2 > 3 - 1 = 2$. So $|a| \ge 1$, which means that (a, b) is an element of B.

So (a, b) is an element of B in both cases, which is what we needed to show.

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

For any integers s and t define L(s,t) as follows:

$$L(s,t) = \{ sx + ty \mid x, y \in \mathbb{Z} \}$$

Thus, L(s,t) consists of all integers that can be expressed as the sum of multiples of s and t. Prove the following claim using your best mathematical style and the following definition of congruence mod k: $p \equiv q \pmod{k}$ if and only if p = q + kn for some integer n.

Claim: For any integers a, b, r, where r is positive, if $a \equiv b \pmod{r}$, then $L(a,b) \subseteq L(r,b)$.

Solution: Let a, b and r be integers, where r is positive. And suppose that $a \equiv b \pmod{r}$. Then a = b + rn for some integer n.

Let q be an element of L(a, b). Then q = ax + by, where x and y are integers.

Substituting a = b + rn into q = ax + by, we get q = x(b + rn) + by. So q = (xn)r + (x + y)b.

xn and x + y are integers, because x, y, and n are integers. So q = (xn)r + (x + y)b implies that $q \in L(r,b)$.

Since q was an arbitrarily chosen element of L(a,b), we've shown that $L(a,b) \subseteq L(r,b)$.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{(a, b) \in \mathbb{R}^2 : b = a^2 - 2\}$

 $B = \{(x, y) \in \mathbb{R}^2 : \lfloor x \rfloor = 4\}$

 $C = \{(p,q) \in \mathbb{R}^2 : 2p \le q\}$

Prove that $A \cap B \subseteq \mathbb{C}$.

Solution: Let $(p,q) \in \mathbb{R}^2$ and suppose $(p,q) \in A \cap B$. Then $(p,q) \in A$ and $(p,q) \in B$. By the definitions of A and B, this means that $q = p^2 - 2$ and $\lfloor p \rfloor = 4$.

Since $\lfloor p \rfloor = 4$, we know that $4 \leq p < 5$.

Since p < 5, 2p < 10.

Since $p \ge 4$, $q = p^2 - 2 \ge 16 - 2 = 14$.

Therefore $2p < 10 < 14 \le q$. Since $2p \le q$, $(p,q) \in C$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{\lambda(0,3) + (1-\lambda)(2,4) \mid \lambda \in [0,1]\}$

 $B = \{(x,y) \in \mathbb{R}^2 \mid x \leq y\}$

Prove that $A \subseteq B$.

Solution:

Let $(x,y) \in A$. Then $(x,y) = \lambda(0,3) + (1-\lambda)(2,4)$ for some $\lambda \in [0.1]$. So $x = 2-2\lambda$ and $y = 3\lambda + 4(1-\lambda) = 4-\lambda$. So $y = x+2+\lambda$

Since $\lambda \in [0.1]$, $\lambda \geq 0$.

So $y = x + 2 + \lambda \ge x$.

Since $x \leq y$, $(x, y) \in B$, which is what we needed to show.