CS 173, Fall 2016 Examlet 3, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (4 points) $M = \{\text{cereal, toast}\}$ $N = \{\text{milk, coffee, wine}\}$ $P = \{\text{wine, beer, (coffee, ham), (milk, ham)}\}$

Solution:

 $M\times (N-P)=M\times \{\text{milk}, \text{coffee}\}=\{(\text{cereal}, \text{milk}), (\text{cereal}, \text{coffee}), (\text{toast}, \text{milk}), (\text{toast}, \text{coffee})\}$ $|M\times N\times P|=2\cdot 3\cdot 4=24$

2. (4 points) Check the (single) box that best characterizes each item.

 $\forall x \in \mathbb{R}$, if $x^2 = 3$, then x > 1000.

true

false

√ undefined

 $A \cap (B \cup C)$ = $(A \cap B) \cup (A \cap C)$

true for all sets A false for all sets A

 $\sqrt{}$

true for some sets A

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

Solution:

$$[5]^2 = [25] = [8]$$

$$[5]^4 = [8]^2 = [64] = [-4]$$

$$[5]^8 = [-4]^2 = [16] = [-1]$$

$$[5]^{16} = [-1]^2 = [1]$$

$$[5]^{32} = [1]^2 = [1]$$

So

$$[5]^{42} = [5]^{32} \cdot [5]^8 \cdot [5]^2 = [1][-1][8] = [-8] = [9]$$

CS 173,	Fal	ll	201	6
Examlet	3,	F	Part	В

NETID:

FIRST:

LAST:

Discussion:

Thursday

3 4

5 Friday 9

10

12

11

1 2

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \times C \subseteq B \times C$, then $A \subseteq B$.

 $\mathbf{2}$

Solution: This is false. Suppose that $A = \{1, 2\}$, $B = \{10, 11\}$, and $C = \emptyset$. Then $A \times C = \emptyset = B \times C$, so $A \times C \subseteq B \times C$. But $A \not\subseteq B$.

2. (4 points) Check the (single) box that best characterizes each item.

For all positive integers n, if n! < -10, then n > 8.

true

false

undefined

 $A \times B = A$

true for all sets A and B true for some sets A and B

√

false for all sets A and B

. В

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Solution: $[5]^2 = [25] = [7]$

$$[5]^4 = [7]^2 = [49] = [4]$$

$$[5]^8 = [4]^2 = [16] = [7]$$

$$[5]^{16} = [7]^2 = [49] = [4]$$

$$[5]^{32} = [4]^2 = [16] = [7]$$

$$[5]^{38} = [5]^{32} \cdot [5]^4 \cdot [5]^2 = [7] \cdot [4] \cdot [7] = [28] \cdot [7] = [1] \cdot [7] = [7]$$

CS 173, Fall 2016 Examlet 3, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday $\mathbf{2}$ 3 4 5 Friday 9 10 11 121 $\mathbf{2}$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $A \cup (B - C) \subseteq (A \cup B) - C$

Solution: This is false. Suppose that $A = \{1, 2\}$, $B = \{3, 4\}$, and $C = \{2, 3\}$.

Then $A \cup (B - C) = \{1, 2\} \cup \{4\} = \{1, 2, 4\}.$

But $(A \cup B) - C = \{1, 2, 3, 4\} - \{2, 3\} = \{1, 4\}.$

So $A \cup (B - C) \not\subseteq (A \cup B) - C$.

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint

A - B = B - A $A = \overline{B}$ $A \cap B = \{\emptyset\}$ $A \cap B = \emptyset$

Ø is

an element of \mathbb{Z}

a subset of \mathbb{Z}

both

neither

3. (7 points) In \mathbb{Z}_{13} , find the value of [7]¹⁹. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

$$[7]^2 = [49] = [10]$$

$$[7]^4 = [100] = [9]$$

$$[7]^8 = [9]^2 = [81] = [3]$$

$$[7]^{16} = [3]^2 = [9]$$

$$[7]^{19} = [7]^{16} \cdot [7]^{[2]} \cdot [7] = [9] \cdot [10] \cdot [7]$$

$$[9] \cdot [10] \cdot [7] = [90] \cdot [7] = [-1] \cdot [7] = [-7] = [6]$$

So
$$[7]^{19} = [6]$$

CS 173, Fall 2016 Examlet 3, Part B

NETID:

FIRST:

LAST:

Thursday Friday 9 11 Discussion: $\mathbf{2}$ $\mathbf{3}$ 4 5 10 121 $\mathbf{2}$

1. (4 points)

 $A = \{\text{fox, tiger, wolf, eagle, cat}\}$ $B = \{3, 4\}$ $C = \{6, 7\}$

Solution:

 $A \times (B \cap C) = A \times \emptyset = \emptyset$

 $|A \times (B \cup C)| = 4 \times 5 = 20$

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint

 $A \cap B = \{\emptyset\}$

 $|A \cap B| = 1$

 $A \cap B = \emptyset$ $A = \overline{B}$

 $\emptyset \times \emptyset =$

 $\{\emptyset\}$

 $\{\emptyset,\emptyset\}$

 $\{(\emptyset,\emptyset)\}$

3. (7 points) In \mathbb{Z}_{11} , find the value of [7]⁴⁰. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

$$[7]^2 = [49] = [5]$$

$$[7]^4 = ([7]^2)^2 = [5]^2 = [25] = [3]$$

$$[7]^8 = ([7]^4)^2 = [3]^2 = [9] = [-2]$$

$$[7]^16 = ([7]^8)^2 = [-2]^2 = [4]$$

$$[7]^32 = ([7]^{16})^2 = [4]^2 = [16] = [5]$$

$$[7]^{40} = [7]^{32} \cdot [7]^8 = [5] \cdot [-2] = [-10] = [1]$$

CS 173,	Fal	ll	201	6
Examlet	3,	F	Part	В

NETID:

FIRST:

LAST:

Discussion:

Thursday

 $3 \quad 4$

5 Friday 9

10

11

12

1 2

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $(A \cup B) - C = A \cup (B - C)$.

 $\mathbf{2}$

Solution:

Let $A = \{1, 2\}, B = \{3\}, \text{ and } C = \{2\}.$

Then $(A \cup B) - C = \{1, 2, 3\} - C = \{1, 3\}.$

But $A \cup (B - C) = \{1, 2\} \cup \{3\} = \{1, 2, 3\}$

2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cup B$, then $x \in A$.

true for all sets A and B

false for all sets A and B

true for some sets A and B

V

then $x \in A$.

 $\{1,2\} \cup \emptyset =$

Ø

 $\{(1,\emptyset),(2,\emptyset)\}$

 $\{1,2,\emptyset\}$

{Ø}

 $\{1, 2\}$

1/

undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

$$[7]^2 = [49] = [10] = [-3]$$

$$[7]^4 = ([7]^2)^2 = [-3]^2 = [9]$$

$$[7]^8 = ([7]^4)^2 = [9]^2 = [81] = [3]$$

$$[7]^{16} = ([7]^8)^2 = [3]^2 = [9]$$

$$[7]^{21} = [7]^{16} \cdot [7]^4 \cdot [7] = [9] \cdot [9] \cdot [7] = [81] \cdot [7] = [3] \cdot [7] = [21] = [8]$$

CS 173,	Fal	ll	201	6
Examlet	3,	F	Part	\mathbf{B}

NETID:

FIRST:

LAST:

Thursday Friday 9 Discussion: $\mathbf{2}$ $\mathbf{3}$ 4 5 10 11 121 $\mathbf{2}$

1. (4 points)

$$A = \{fox, cat\}$$

$$B = \{3, 4\}$$
 $C = \{3, 7\}$

$$C = \{3, 7\}$$

Solution:

$$A\times(B\cap C)=A\times\{3\}=\{(\text{fox},3),(\text{cat},3)\}$$

$$A \cap B = \emptyset$$

2. (4 points) Check the (single) box that best characterizes each item.

 $|A \cup B| = |A| + |B|$

true for all sets A

false for all sets A

true for some sets A

 $\emptyset \times A = A \times \emptyset$

true for all sets A

true for some sets A

false for all sets A

3. (7 points) In \mathbb{Z}_{11} , find the value of $[8]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

$$[8]^2 = [64] = 9$$

$$[8]^4 = [9]^2 = [81] = [4]$$

$$[8]^8 = [4]^2 = [16] = [5]$$

$$[8]^{16} = [5]^2 = [3]$$

$$[8]^{32} = [3]^2 = [9]$$

$$[8]^{37} = [8]^{32} \cdot [8]^4 \cdot [8] = [9] \cdot [4] \cdot [8] = [36] \cdot [8] = [3] \cdot [8] = [24] = [2]$$