\mathbf{CS}	173,	Fa	11	201	6
Exa	\mathbf{mlet}	3,	F	Part	\mathbf{B}

NETID:	
--------	--

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (4 points) $M = \{\text{cereal, toast}\}$ $N = \{\text{milk, coffee, wine}\}$ $P = \{\text{wine, beer, (coffee, ham), (milk, ham)}\}$ $M \times (N - P) =$

 $|M \times N \times P| =$

2. (4 points) Check the (single) box that best characterizes each item.

 $\forall x \in \mathbb{R}$, if $x^2 = 3$, then x > 1000.

true

false

undefined

 $A \cap (B \cup C)$ = $(A \cap B) \cup (A \cap C)$

true for all sets A false for all sets A

true for some sets A

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

CS 173, Fall Examlet 3, F		NET	ΓID:								
FIRST:				LA	ST:						
Discussion: 7	Thursday	2	3 4	5	Frida	y 9	10	11	12	1	2
1. (4 points) Is this	claim true? G	ive a o	concrete	count	er-exam	ple or	briefly	explai	n why	it's t	rue.
For any sets.	A, B, and C, i	$f A \times$	$C \subseteq B$	< C. t	hen $A \subset$. B.					
Tor any sees a	1, D, wild C, 1	111 /	0 = D /	· · · , · ·	1011 71 2	Д.					
2. (4 points) Check t	he (single) box	that	best cha	ractei	rizes eac	h iten	1.				
For all positive int	-		ſ							7	
if $n! < -10$, then $n!$	n > 8.		true		false		ur	ndefine	d		
$A \times B = A$, c	11									
	trun tor	· all co	ets A and	ł R		4	falen for	r all set	-a A az	$^{\rm d}$ R	

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{38}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 8$.

	, Part B		<i>1</i> 1 11	D:							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
(4 points) Is t	v					v					

For any sets A, B, and $C, A \cup (B - C) \subseteq (A \cup B) - C$

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B ar	· ·	$B = B - A$ $B = \{\emptyset\}$	$A = \overline{B}$ $A \cap B = \emptyset$	
Ø is	an element of $\mathbb Z$	a subset of Z	Z both	neither

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

\mathbf{CS}	173,	Fa	11	201	6
Exa	\mathbf{mlet}	3,	F	Part	\mathbf{B}

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (4 points) $A = \{\text{fox, tiger, wolf, eagle, cat}\} \qquad B = \{3,4\} \qquad C = \{6,7\}$ $A \times (B \cap C) =$

 $|A \times (B \cup C)| =$

2. (4 points) Check the (single) box that best characterizes each item.

Sets A and B are disjoint $A \cap B = \{\emptyset\}$ $A \cap B = \emptyset$ $A \cap B =$

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{40}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

CS 173,	Fa]	1	201	6
Examlet	3,	F	Part	В

NETID:	
--------	--

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true. For any sets A, B, and $C, (A \cup B) - C = A \cup (B - C)$.

2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cup B$, then $x \in A$.	true for all sets false for all sets		true	e for some set	s A and B	
$\{1,2\} \cup \emptyset =$	Ø	$\{(1,\emptyset),(2,\emptyset)\}$		$\{1,2,\emptyset\}$		
	$\{\emptyset\}$	$\{1, 2\}$		undefined		

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

\mathbf{CS}	173,	Fa	11	201	6
Exa	\mathbf{mlet}	3,	F	Part	\mathbf{B}

NETID:

FIRST:

LAST:

5 Discussion: Thursday $\mathbf{2}$ 3 4 Friday 9 10 11 **12** 1 2

1. (4 points) $A \times (B \cap C) =$ $A = \{fox, cat\}$

 $B = \{3, 4\}$

 $C = \{3, 7\}$

 $A \cap B =$

2. (4 points) Check the (single) box that best characterizes each item.

 $|A \cup B| = |A| + |B|$

true for all sets A false for all sets A true for some sets A

 $\emptyset \times A = A \times \emptyset$

true for all sets A

false for all sets A true for some sets A

3. (7 points) In \mathbb{Z}_{11} , find the value of $[8]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.