CS 173, Fall 2016 Examlet 4, Part A		NETID:									
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

Suppose that n is some positive integer. Let's define the relation R_n on the integers such that aR_nb if and only if $a \equiv b + 1 \pmod{n}$. Prove the following claim

Claim: For any integers x, y, and z, if xR_ny and yR_nz and xR_nz , then n=1.

You must work directly from the definition of congruence mod k, using the following version of the definition: $x \equiv y \pmod{k}$ iff x - y = mk for some integer m. You may use the following fact about divisibility: for any non-zero integers p and q, if $p \mid q$, then $|p| \leq |q|$.

\mathbf{CS}	173,	Fa	11	201	6
Exa	mlet	4.	F	Part	A

NETID:		

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Let's define a relation T between pairs of natural numbers as follows:

(a,b)T(p,q) if and only if $a\mid p$ and b=q.

Working directly from this definition and the definition of divides, prove that T is antisymmetric.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Let T be the relation defined on \mathbb{N}^2 by

(x,y)T(p,q) if and only if x < p or $(x = p \text{ and } y \leq q)$

Prove that T is transitive.

NETID:		
--------	--	--

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Recall how to multiply a real number α by a 2D point $(x,y) \in \mathbb{R}^2$: $\alpha(x,y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists a real number $\alpha\geq 1$ such that $(x,y)=\alpha(p,q)$.

Prove that \gg is antisymmetric.

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Let's define a relation T between natural numbers follows:

aTb if and only if a = b + 2k where $k \in \mathbb{N}$

Working directly from this definition, prove that T is antisymmetric.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if (xy)(p+q)=(pq)(x+y)

Prove that T is transitive.