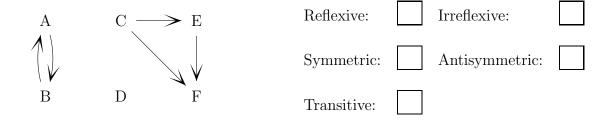
\mathbf{CS}	173,	Fal	ll	201	6
Exa	\mathbf{mlet}	4,	F	Part	\mathbf{B}

NETID:

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(x,y)\sim(p,q)$ if and only |x|+|y|=|p|+|q|. List three members of [(2,3)].

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if xy = 1 for all integers x and y. Is R a partial order?

CS 173, Fa Examlet 4			NE	ETII	D :									
FIRST:						LA	ST:							
Discussion:	Thursd	lay	2	3	4	5	Fric	day	9	10	11	12	1	2
1. (5 points) Ch	eck all boxe	s tha	ıt cor	rectly	chai	racteri	ze thi	s rela	atio	n on th	ne set {	$\{A,B,C\}$	C, D,	E, F
A	→ C	E			F	Reflexi	ve:] I1	rreflexi	ve:]	
	\downarrow				S	Symme	etric:] A	ntisyn	nmetrio	e:]	
В	D	F]	Transit	ive:]					

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x \leq p$ or $y \leq q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Fall 2016 Examlet 4, Part B	NETID:		
FIRST:		LAST:	

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

5

Friday 9

10

11

12

1

 $\mathbf{2}$

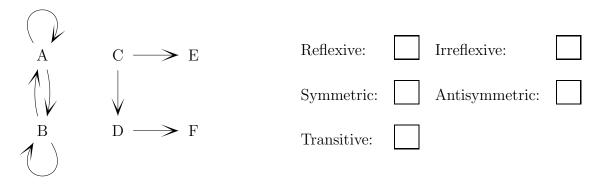
4

Discussion:

Thursday

 $\mathbf{2}$

3



2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if gcd(a,b) > 1. Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

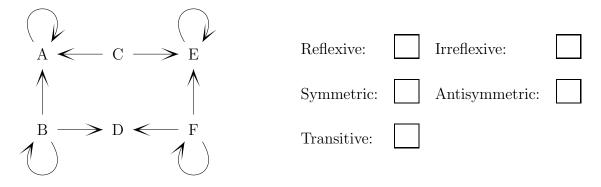
\mathbf{CS}	173,	Fal	ll	201	6
Exa	\mathbf{mlet}	4,	F	Part	В

NETID:		

	T. A. C.
FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only aq = bp. List three members of [(5,6)].

3. (5 points) Let S be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that (x, y)S(p, q) if and only if $x^2 + y^2 \le p^2 + q^2$. Is S antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

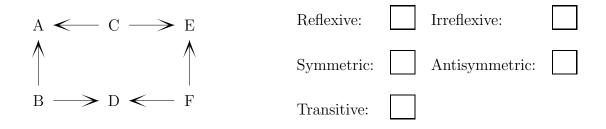
CS 173, Fa Examlet 4			NE	ETII	D:									
FIRST:						LA	ST:							
Discussion:	Thurs	sday	2	3	4	5	Fri	day	9	10	11	12	1	2
1. (5 points) Ch	neck all bo	xes tha	t cor	rectly	cha	racter	ize th	is rela	atio	n on th	ne set {	$\{A,B,C\}$	C, D,	E, F
A	C	E			F	Reflex	ive:] Iı	reflexi	ve:]	
					S	symm ₍	etric:		A	ntisyn	nmetrio	e:]	
B		F \	\		7	Transi	tive:							

2. (5 points) Let R be the relation on the integers such that xRy if and only if $\lfloor x/4 \rfloor = \lfloor y/4 \rfloor$. List the values in [8].

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if $2 \mid (x+y+1)$. Is R transitive?x

CS 173, Fa Examlet 4,	NE	TII):								
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lceil x \rceil = \lceil y \rceil$. Give three members of the equivalence class [13].

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "disjoint" relation D on J by (a,b)D(c,d) if and only if $b \le c$ or $d \le a$. Is D transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.