CS 173, Fall 2016

NETID:
Examlet 5, Part A

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

1. (10 points) Suppose that f :Z — Z is one-to-one. Let’s define g : Z* — Z* by
g(x,y) = 2f(z) + f(y), f(z) — f(y)). Prove that g is one-to-one. You must work directly from
the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing
functions.

Solution: Let (z,y) and (p,q) be elements of Z? and suppose that g(z,y) = g(p, q).

By the definition of h, this means that (2f(x) + f(y), f(z) — f(y)) = (2f(p) + f(q), f(p) — f(q)).
So 2f(z) + f(y) = 2f(p) + f(q) and f(x) — f(y) = f(p) — f(@)-

Adding these two equations, we get 3f(z) = 3f(p). So f(x) = f(p). Since f is one-to-one, this
means that x = p.

Subtracting twice the second equation from the first, we get —3f(y) = —3f(q). So f(y) = f(q).
Since f is one-to-one, this means that y = q.

Since x = p and y = ¢, (x,y) = (p, q), which is what we needed to show.

2. (5 points) A =1{1,3,5,7,9,...}, i.e. the positive odd numbers.
B ={-1,-2,-3,—4,-5...}, i.e. negative numbers
Give a specific formula for a bijection f : A — B. (You do not need to prove that it is a bijection.)

Solution: f(n) = —2%
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1. (10 points) Suppose that ¢ : N — N is one-to-one. Let’s define the function f : N* — N? by
the equation f(z,y) = (x + g(y), g(x)). Prove that f is one-to-one. You must work directly from
the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing
functions.

Solution: Let (z,y) and (a,b) be pairs of natural numbers and suppose that f(z,y) = f(a,b).
By the definition of f, we know that = + g(y) = a + ¢g(b) and g(x) = g(a).

Since g is one-to-one and g(x) = g(a), x = a. Substituting this into = + g(y) = a + g(b), we get
z+9g(y) =z +g(b), so gly) = g(b).

Since g is one-to-one, g(y) = g(b) implies that y = b.

Since x = a and y = b, (z,y) = (a,b), which is what we needed to show.

2. (5 points) Using precise mathematical words and notation, define what it means for a function
g: C — M to be “onto.” You must use explicit quantifiers. Do not assume the reader knows what
the image of the function is.

Solution: For every element y in M, there is an element z in C' such that g(z) = y.
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1. (10 points) Suppose that f : [0,3] — [1,35] is defined by f(z) = fj;’:clg Prove that f is one-to-one.
You must work directly from the definition of one-to-one. Do not use any facts about (for example)
derivatives or the behavior of increasing functions.

Solution:

Let x and y be any numbers in [0, %] and suppose f(z) = f(y), that is

?+1 41
1—222 1—2y2
(22 + 1)(1 —2y%) = (y* + 1)(1 — 227)

=
= 22+ 1-22%% — 22 = y* + 1 — 22%y* — 227
= 322 =3y°

= x=y

(The last step works because x and y are both positive.)

Therefore f is one-to-one.

2. (5 points) Complete this picture to make an example of a function that is onto but not one-to-one,
by adding elements to the domain and arrows showing how input values map to output values. The
elements of the domain must be letters of the alphabet.
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1. (10 points) Suppose that g : Z — Z is one-to-one. Let’s define h : Z? — Z? by
h(z,y) = (g(x) + g(y),g(x) — g(y)). Prove that h is one-to-one. You must work directly from
the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing
functions.

Solution: Let (z,y) and (p,q) be elements of Z? and suppose that h(x,y) = h(p,q).

By the definition of h, this means that (g(x) + g(v), 9(z) — g(y)) = (9(p) + 9(q), 9(p) — 9(q)). So
9(x) +g(y) = g(p) + 9(q) and g(x) — g(y) = g(p) — 9(q).

Adding these equations together, we get 2¢g(x) = 2g(p). So g(x) = g(p). Since g is one-to-one, this
implies that = = p.

Similarly, if we subtract the two equations, we get 2g(y) = 2¢g(q). So ¢g(y) = g(¢). And since g is
one-to-one, y = q.

Since x = p and y = ¢, (x,y) = (p, q), which is what we needed to show.

2. (5 points) Give an example of a function f: N — N which is onto but not one-to-one. Be specific.

Solution: Let f(n) = |n/2] Then f is onto. But f isn’t one-to-one because (for example) both
0 and 1 are mapped onto 0.
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1. (10 points) Suppose that f:Z* — Z is defined by f(x,y) = xy + yx? — 2. Prove that f is onto.
Solution:
Notice that f(x,y) = zy + (y — 1)
Let p be an integer. We need to find a pre-image for p.
Consider m = (p, 1).

m is an element of Z?. We can compute

fm)=p-1+(1—-1)p*=p+0-p*=p

So m is a pre-image of p.
Since we can find a pre-image for an arbitrarily chosen integer, f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function
g : C — M to be “one-to-one.” You must use explicit quantifiers; do not use words like “unique”.

Solution: For every elements « and y in C, if g(z) = g(y), then x =y
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1. (10 points) Suppose that A and B are sets. Suppose that f: B — A and g : A — B are functions
such that f(g(z)) = « for every x € A. Prove that f is onto.

Solution: Let m be an element of A. We need to find a pre-image for m.

Consider n = g(m). n is an element of B. Furthermore, since f(g(x)) = x for every z € A, we have
f(n) = f(g(m)) =m.

So n is a pre-image of m.

Since we can find a pre-image for an arbitrarily chosen element of A, f is onto.

2. (5 points) Suppose that g : A — B and f: B — C. Prof. Snape claims that if f o g is one-to-one,
then f is one-to-one. Disprove this claim using a concrete counter-example in which A, B, and C
are all small finite sets.

Solution:




