NETID:

| FIRST: | LAST: |
|--------|-------|
|        |       |

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that  $f: \mathbb{Z} \to \mathbb{Z}$  is one-to-one. Let's define  $g: \mathbb{Z}^2 \to \mathbb{Z}^2$  by g(x,y) = (2f(x) + f(y), f(x) - f(y)). Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

**Solution:** Let (x,y) and (p,q) be elements of  $\mathbb{Z}^2$  and suppose that g(x,y)=g(p,q).

By the definition of h, this means that (2f(x) + f(y), f(x) - f(y)) = (2f(p) + f(q), f(p) - f(q)). So 2f(x) + f(y) = 2f(p) + f(q) and f(x) - f(y) = f(p) - f(q).

Adding these two equations, we get 3f(x) = 3f(p). So f(x) = f(p). Since f is one-to-one, this means that x = p.

Subtracting twice the second equation from the first, we get -3f(y) = -3f(q). So f(y) = f(q). Since f is one-to-one, this means that y = q.

Since x = p and y = q, (x, y) = (p, q), which is what we needed to show.

2. (5 points)  $A = \{1, 3, 5, 7, 9, \ldots\}$ , i.e. the positive odd numbers.

 $B = \{-1, -2, -3, -4, -5...\}$ , i.e. negative numbers

Give a specific formula for a bijection  $f: A \to B$ . (You do not need to prove that it is a bijection.)

Solution:  $f(n) = -\frac{n+1}{2}$ 

| CS 173, | Fal        | 11 | 201  | 6 |
|---------|------------|----|------|---|
| Examlet | <b>5</b> , | F  | Part | A |

| FIRST: | LAST: |
|--------|-------|
|        |       |

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that  $g: \mathbb{N} \to \mathbb{N}$  is one-to-one. Let's define the function  $f: \mathbb{N}^2 \to \mathbb{N}^2$  by the equation f(x,y) = (x+g(y),g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

**Solution:** Let (x,y) and (a,b) be pairs of natural numbers and suppose that f(x,y)=f(a,b).

By the definition of f, we know that x + g(y) = a + g(b) and g(x) = g(a).

Since g is one-to-one and g(x) = g(a), x = a. Substituting this into x + g(y) = a + g(b), we get x + g(y) = x + g(b), so g(y) = g(b).

Since g is one-to-one, g(y) = g(b) implies that y = b.

Since x = a and y = b, (x, y) = (a, b), which is what we needed to show.

2. (5 points) Using precise mathematical words and notation, define what it means for a function  $g: C \to M$  to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

**Solution:** For every element y in M, there is an element x in C such that g(x) = y.

NETID:

| FIRST: | LAST: |
|--------|-------|
|        |       |

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that  $f:[0,\frac{1}{2}] \to [1,\frac{5}{2}]$  is defined by  $f(x) = \frac{x^2+1}{1-2x^2}$  Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

## Solution:

Let x and y be any numbers in  $[0,\frac{1}{2}]$  and suppose f(x)=f(y), that is

$$\frac{x^2 + 1}{1 - 2x^2} = \frac{y^2 + 1}{1 - 2y^2}$$

$$\Rightarrow (x^2 + 1)(1 - 2y^2) = (y^2 + 1)(1 - 2x^2)$$

$$\Rightarrow x^2 + 1 - 2x^2y^2 - 2y^2 = y^2 + 1 - 2x^2y^2 - 2x^2$$

$$\Rightarrow 3x^2 = 3y^2$$

$$\Rightarrow x = y$$

(The last step works because x and y are both positive.)

Therefore f is one-to-one.

2. (5 points) Complete this picture to make an example of a function that is onto but not one-to-one, by adding elements to the domain and arrows showing how input values map to output values. The elements of the domain must be letters of the alphabet.



NETID:

| FIRST: | LAST: |
|--------|-------|
|        |       |

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that  $g: \mathbb{Z} \to \mathbb{Z}$  is one-to-one. Let's define  $h: \mathbb{Z}^2 \to \mathbb{Z}^2$  by h(x,y) = (g(x) + g(y), g(x) - g(y)). Prove that h is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

**Solution:** Let (x,y) and (p,q) be elements of  $\mathbb{Z}^2$  and suppose that h(x,y)=h(p,q).

By the definition of h, this means that (g(x) + g(y), g(x) - g(y)) = (g(p) + g(q), g(p) - g(q)). So g(x) + g(y) = g(p) + g(q) and g(x) - g(y) = g(p) - g(q).

Adding these equations together, we get 2g(x) = 2g(p). So g(x) = g(p). Since g is one-to-one, this implies that x = p.

Similarly, if we subtract the two equations, we get 2g(y) = 2g(q). So g(y) = g(q). And since g is one-to-one, y = q.

Since x = p and y = q, (x, y) = (p, q), which is what we needed to show.

2. (5 points) Give an example of a function  $f: \mathbb{N} \to \mathbb{N}$  which is onto but not one-to-one. Be specific. **Solution:** Let  $f(n) = \lfloor n/2 \rfloor$  Then f is onto. But f isn't one-to-one because (for example) both 0 and 1 are mapped onto 0.

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that  $f: \mathbb{Z}^2 \to \mathbb{Z}$  is defined by  $f(x,y) = xy + yx^2 - x^2$ . Prove that f is onto. Solution:

Notice that  $f(x,y) = xy + (y-1)x^2$ .

Let p be an integer. We need to find a pre-image for p.

Consider m = (p, 1).

m is an element of  $\mathbb{Z}^2$ . We can compute

$$f(m) = p \cdot 1 + (1-1)p^2 = p + 0 \cdot p^2 = p$$

So m is a pre-image of p.

Since we can find a pre-image for an arbitrarily chosen integer, f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function  $g: C \to M$  to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

**Solution:** For every elements x and y in C, if g(x) = g(y), then x = y

NETID:

| FIRST: | LAST: |
|--------|-------|
|        |       |

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that A and B are sets. Suppose that  $f: B \to A$  and  $g: A \to B$  are functions such that f(g(x)) = x for every  $x \in A$ . Prove that f is onto.

**Solution:** Let m be an element of A. We need to find a pre-image for m.

Consider n = g(m). n is an element of B. Furthermore, since f(g(x)) = x for every  $x \in A$ , we have f(n) = f(g(m)) = m.

So n is a pre-image of m.

Since we can find a pre-image for an arbitrarily chosen element of A, f is onto.

2. (5 points) Suppose that  $g: A \to B$  and  $f: B \to C$ . Prof. Snape claims that if  $f \circ g$  is one-to-one, then f is one-to-one. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.

