\mathbf{CS}	173,	Fa	11	201	6
Exa	\mathbf{amlet}	5 ,	F	Part	A

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (2f(x) + f(y), f(x) - f(y)). Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) $A = \{1, 3, 5, 7, 9, \ldots\}$, i.e. the positive odd numbers.

 $B = \{-1, -2, -3, -4, -5...\}$, i.e. negative numbers

Give a specific formula for a bijection $f: A \to B$. (You do not need to prove that it is a bijection.)

CS 173, Fall 2016 Examlet 5, Part A		NETID:									
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (10 points) Suppose that $g: \mathbb{N} \to \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^2 \to \mathbb{N}^2$ by the equation f(x,y) = (x + g(y), g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \to M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

CS 173, Fall 2016 Examlet 5, Part A		NE	TII								
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (10 points) Suppose that $f:[0,\frac{1}{2}] \to [1,\frac{5}{2}]$ is defined by $f(x) = \frac{x^2+1}{1-2x^2}$ Prove that g is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

2. (5 points) Complete this picture to make an example of a function that is onto but not one-to-one, by adding elements to the domain and arrows showing how input values map to output values. The elements of the domain must be letters of the alphabet.

CS 173, Fall 2016 Examlet 5, Part A			NETID:									
FIRST:					LA	AST:						
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2	

1. (10 points) Suppose that $g: \mathbb{Z} \to \mathbb{Z}$ is one-to-one. Let's define $h: \mathbb{Z}^2 \to \mathbb{Z}^2$ by h(x,y) = (g(x) + g(y), g(x) - g(y)). Prove that h is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ which is onto but not one-to-one. Be specific.

\mathbf{CS}	173,	Fal	ll	201	6
Exa	\mathbf{mlet}	5 ,	\mathbf{P}	art	A

NETID:	

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (10 points) Suppose that $f: \mathbb{Z}^2 \to \mathbb{Z}$ is defined by $f(x,y) = xy + yx^2 - x^2$. Prove that f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \to M$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

CS 173, Fall 2016 Examlet 5, Part A			NETID:								
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

1. (10 points) Suppose that A and B are sets. Suppose that $f: B \to A$ and $g: A \to B$ are functions such that f(g(x)) = x for every $x \in A$. Prove that f is onto.

2. (5 points) Suppose that $g: A \to B$ and $f: B \to C$. Prof. Snape claims that if $f \circ g$ is one-to-one, then f is one-to-one. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.