CS 173, Fa Examlet 5,		NET	ΓID:								
FIRST:				LA	ST:						
Discussion:	Thursday	2	3 4	5	Friday	9	10	11	12	1	2
1. (5 points) Sup Briefly justify o		2 and	B =3.	How	many ont	o func	tions	are tl	here fro	om A	to B
Solution: Th	ere are no onto f	unctior	ns from .	$A ext{ to } I$	B, because	A is	small	ler tha	an $ B $.		
2. (10 points) Che	eck the (single) b	ox that	t best cl	naract	erizes each	item.					
,	()										
	\mathbb{R} to \mathbb{R} is stricted only if it is one-	-to-	rue		false	$\sqrt{}$					
$g: \mathbb{Z} \to \mathbb{Z},$ $g(x) = 7 - \lfloor \frac{x}{3} \rfloor$	onto		no	t onto		not a	a func	ction			
$g:(0,\frac{\pi}{2})\to\mathbb{R},$ $g(x)=\sin(x)$	one-to-or	ne v	/	not on	e-to-one		no	ot a fu	unction	ı [
stamina. If the	exactly one gift: re are 10 elves, that at least thre	he pige	onhole		truo	$\sqrt{}$	fa	ılse [
$\exists y \in \mathbb{N}, \ \forall x \in \mathbb{N}$	$\forall, \ x = xy$	tı	rue 1	/	false						

CS 173, Fall 2016 Examlet 5, Part B	NE	TID:						
FIRST:			LA	ST:				
Discussion: Thursda	y 2	3 4	5	Friday 9	10	11	12	1 2
1. (5 points) Hermione Graing colored purple, magenta, an before she is guaranteed to h	d shocki	ng pink.	How	many socks	must sh	e pull	out of t	the drawe
Solution: She needs to pul colors means that two must			-	pigeonhole pi	rinciple,	four so	ocks and	only thre
2. (10 points) Check the (single	e) box th	at best c	haract	erizes each it	em.			
A function is onto if and onlimage is the same as its co-d	•	true	$\sqrt{}$	false				
$f: \mathbb{Z} \to \mathbb{Z},$ $f(x) = x + 3 \ (x \text{ even}),$ $f(x) = x - 22 \ (x \text{ odd})$	one-to-o	one		not one-to-on	e 🗸	n	ot a fun	ction
$g: \mathbb{R} \to \mathbb{R},$ $g(x) = \sin(x)$ onto		not on	to	$\sqrt{}$ not ϵ	function	on		
$g: \mathbb{R} \to \mathbb{Z},$ $g(x) = \lfloor x \rfloor$ one-	-to-one		not o	one-to-one	$\sqrt{}$	not a	function	
$\forall x \in \mathbb{R}^+, \ \exists y \in \mathbb{R}^+, \ xy = 1$ (\mathbb{R}^+ is the positive real num	bers.)	true		false				

CS 173, Fa Examlet 5,		NE	TII):							
FIRST:				$\mathbf{L}\mathbf{A}$	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9 10) 11	12	1	2
1. (5 points) How word "silli	v many different ness''? Show			_	can	be made be	e rearra	nging t	he char	acters	in the
	nere are 9 letter	-			copi	es of s, two	l's, ar	nd 2 i's	. So th	e nun	nber of
				-	9!! 3!2!2!						
2. (10 points) Che	eck the (single) b	ox th	at be		_		item.				
	om $\mathbb R$ to $\mathbb R$ is striction ust be one-to-on		true	1	✓	false					
$f: \mathbb{Z} \to \mathbb{Z},$ f(x) = x + 3 (x) f(x) = x - 21 (x)		nto			not c	onto	not	a func	tion [
$f: \mathbb{N}^2$ $\mathbb{Z}, \ f(p,q) = 2^{p_2}$	ightarrow 0 one-to	o-one]	not	one-to-one		no	a func	tion	
$g: \mathbb{N} \to \mathbb{Z},$ $g(x) = x^2$	one-to-or	ne [$\sqrt{}$	n	ot or	ne-to-one		not a	function	n	
$\exists y \in \mathbb{R}^+, \ \forall x \in (\mathbb{R}^+ \text{ is the posit})$	$\mathbb{R}^+, xy = 1$ sive real numbers	s.)	t	rue		false					

CS 173, Fa		NETI	D:							
FIRST:			L							
Discussion:	Thursday	2 3	$4 binom{5}$	Frid	ay 9	10	11	12	1	2
 (5 points) Supare there from Solution: q^p 		ρ and $ B $	= q. How	v many d	lifferent	functi	ons			
2. (10 points) Che	eck the (single) b	ox that b	est chara	cterizes e	each iten	n.				
	onto, then each v at least one pre-i		ne true	$\sqrt{}$	false					
$g: \mathbb{R} \to \mathbb{R},$ $g(x) = \sin(x)$	one-to-or	ne	not o	one-to-on	e 🗸	1	not a fi	unctior	n]
$g: \mathbb{N} \to \mathbb{Z},$ $g(x) = x^2$	onto	n	ot onto	$\sqrt{}$	not a f	iunctio	on _			
$f: \mathbb{N} \to \mathbb{N},$ $f(x) = 3 - x$	one-to-or	ne	not (one-to-on	e	n	ot a fu	ınction]
$\forall p \in \mathbb{Z}^+, \ \exists t \in$	$\mathbb{Z}^+, \ \gcd(p,t) = 1$	trı	ie 🗸	false	e 🗌					

CS 173, Fall 2 Examlet 5, Pa		NETID:								
FIRST:			LA	AST:						
Discussion: Th	ursday	2 3	$4 binom{5}{4}$	Frida	ay 9	10	11	12	1	2
1. (5 points) Prof. Sr. between zero and 100 got the same score?). Assuming 1	no one mis	sed the	_			-		_	
Solution: There are students got the same		-				·		-	rincip	le, two
2. (10 points) Check the	e (single) box	that best	charact	terizes ea	ach iter	n.				
If a function from \mathbb{R} it must be one-to-one		<u> </u>	ue] t	false [$\sqrt{}$				
$f: \mathbb{Z} \to \mathbb{R},$ $f(x) = x$	one-to-one	$\sqrt{}$	not or	ne-to-one	е 🗌	r	ot a fu	unction]
$g: \mathbb{Z} \to \mathbb{R},$ g(x) = x + 2.137	one-to-on	e 🗸	onumber not onumber of on	one-to-oi	ne		not a	functio	on [
$g: \mathbb{Z} \to \mathbb{R},$ g(x) = x + 2.137	onto	not	onto	$\sqrt{}$	not a	functi	on			
$\exists y \in \mathbb{N}, \ \forall x \in \mathbb{Z}, \ x^2 =$	=y	true [false	$\sqrt{}$					

CS 173, Fa Examlet 5		NE	CTII):									
FIRST:					LAST:								
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2	
1. (5 points) Sup Briefly justify		3 and	d B	= 2.	How	many ont	o fu	nction	s are t	here fr	om A	to B	
and $B = \{4, 5\}$ mapping to the	doesn't matter w Two elements other output va for which outpu	of A if A lue. The A	must Γhere	map are t	to th	e same out choices for	tput whi	value, ch eler	with the nent x	he thin is. An	rd ele	ment a	
2. (10 points) Ch	eck the (single) b	oox th	at be	est ch	aract	erizes each	iter	n.					
•	s a function such in the real number		the		main nage		CO	-domai	n v	/			
$g: \mathbb{N} \to \mathbb{Z},$ $g(x) = x $	one-to	o-one		'	not	one-to-one	e [not	a funct	ion		
$g: \mathbb{Z} \to \mathbb{N},$ $g(x) = x $	onto	$\sqrt{}$	no	ot ont	TO	no	ot a :	functio	on				
stamina. If the	exactly one gift: ere are 10 elves, t that at least thre	he pi	geonh	ole		or true			false				
$\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{N}$	$\mathbb{N}, \ x^2 = y$		true	V	/	false							