\mathbf{CS}	173,	Fal	ll 201	6
Exa	amlet	7,	Part	A

NETID:	
NETID:	

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

For any natural number n, $2n^3 + 3n^2 + n$ is divisible by 6.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=1}^{n} \frac{1}{(2j-1)(2j+1)} = \frac{n}{2n+1} \text{ for all integers } n \ge 1.$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:	
--------	--

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

Claim: $3^{2n+1} + 1$ is divisible by 4, for all natural numbers n

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=2}^{n} \frac{1}{j(j-1)} = \frac{n-1}{n}$$
 for all integers $n \ge 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:		

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

Claim: $7^n - 2^n$ is divisble by 5, for all natural numbers n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$
, for all positive integers n .

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: