can't tell

CS 173, Fa		NE'	TID	.						
FIRST:				\mathbf{L}_{2}	AST:					
Discussion:	Thursday	2	3	$egin{array}{cccc} 4 & 5 \end{array}$	Friday	9 10	0 11	12	1	2
	P q G R ne chromatic num pper bound). Sin	B aber is ace it c	B G three contain	R R R R The pastrian	picture abov	ve shows o have a	that it	can be o		
$\sum_{i=1}^{p-1} i$	$\frac{(p-1)^2}{2}$	$\frac{(p-1)(p-1)}{2}$	p+1)		$\frac{p(p+1)}{2}$	<u>p</u>	$\frac{(p-1)}{2}$	$\sqrt{}$		
a 100 pound w	idge collapsed uneight. 100 pound much the bridge	ls is		upper l	oound on und on	√ 	exactly not a l	oound o	on [

Chromatic number of a bipartite

graph with at least one edge

\mathbf{CS}	173,	Fal	ll 2 01	L 6
Exa	\mathbf{mlet}	7,	Part	\mathbf{B}

NETID:

FIRST: LAST:

Thursday Friday 9 Discussion: $\mathbf{2}$ $\mathbf{3}$ 4 5 10 11 121 $\mathbf{2}$

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

Solution: The chromatic number is five. The picture above shows how to color it with five colors (upper bound).

For the lower bound, the graph contains a W_5 whose hub is F and whose rim contains nodes A, B, C, D, E. Coloring a W_5 requires four colors. Then the node G is connected to all six nodes in the W_5 , so it needs a different, fifth color.

2. (6 points) Check the (single) box that best characterizes each item.

 $\pi \leq 7.3$

an upper bound on π a lower bound on π

exactly π not a bound on π

Chromatic number of a graph with maximum vertex degree D

= D $\geq D+1$

CS 173, Fall 2016 Examlet 7, Part B	NET	ΓID	:								
FIRST:			\mathbf{L}	AST	•						
Discussion: Thursday	2	3	4 5	Fr	iday	9	10	11	12	1	2
1. (11 points) Let's define two set	s as fo	llows	:								
E			(p+1, p+1) + (1-p+1)	, 1	,	$i \in \mathbb{R}$	}				
Prove that $A = B$ by proving tw	wo sub	set ir	nclusion	ıs.							
Solution: $B \subseteq A$: Let (x, y) $\lambda(1, 0) + (1 - \lambda)(2, 1)$ for some $x = y + 1$. So (x, y) has the form	real nu	umbe	er λ . T	hen x	$=\lambda +$	2 —	$2\lambda =$				
$A \subseteq B$: Let (x,y) be a pair o $\lambda = 1 - y$. Then $y = 1 - \lambda$ as Therefore $(x,y) \in A$.											
Since $A \subseteq B$ and $B \subseteq A$, $A = B$	3.										
2. (4 points) Check the (single) be	ox that	best	charac	terizes	each	item	•				
Chromatic number of a graph v no edges	vith	1	$\sqrt{}$	2			3		can ³	't tell	
Suppose I want to estimate $\frac{103}{50}$. 3 is			upper lower b		l 🗸			xact a			

a lower bound

not a bound on

CS 173, Fa		NE	ETII	D:							4
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
1. (9 points) Who to the second of the secon	at is the chromate	(R)	B	B						colore	ed with
four colors (up)		nber	is fot	ır. 1	he pi	cture above sh	ows th	at it c	an be	colore	ed with
Suppose we tr	y to color it wit	h onl	ly th	ree c	olors.	Suppose we	color (C, t, s	with I	Я, В,	and C

(respectively). Then D must be colored R. This forces x and y to be B and G (in either order). A is again R. And so on around the circle until we get to E. E has neighbors of all three colors. So

an upper bound on

a lower bound on

exactly

not a bound on

can't tell

four colors are required (lower bound).

The 10 students wouldn't fit into

John's van. 10 is ____ how many

Chromatic number of a graph with

no cycles and at least one edge

students the van can carry.

2. (6 points) Check the (single) box that best characterizes each item.

CS 173,	Fal	11	201	6
Examlet	7,	F	Part	\mathbf{B}

NETID:

FIRST:

LAST:

Discussion:

Thursday

3 4

Friday 9 5

10

11 12 1 $\mathbf{2}$

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

 $\mathbf{2}$

The chromatic number is three. The picture above shows that it can be colored with three colors (upper bound). Since it contains triangles, we also have a lower bound of three.

2. (6 points) Check the (single) box that best characterizes each item.

 W_7 is a subgraph of graph H. 7 is $\underline{\hspace{1cm}}$ the chromatic number of H.

an upper bound on a lower bound on

exactly not a bound on

 $1 - (\frac{1}{2})^n$

 $2 - (\frac{1}{2})^{n-1}$

Suppose I want to estimate $\frac{103}{20}$. 3 is _____

an upper bound a lower bound

an exact answer not a bound on

CS 173, Fa Examlet 7		NE	TII	D:							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
1. (11 points) Le	et's define two set	s as f	follow	/S:							
		A	$I = \{$	$x \in \mathbb{F}$	2:	$ x+1 \le 2\}$					
		B =	$\{w\in$	$\in \mathbb{R}$:	w^2	$+2w-3 \le 0$	-				
Prove that $A =$	= B by proving to	wo su	bset	inclus	sions						
	$\subseteq B$: Let x be so $-3 \le x \le 1$.										
polynomial, we $x + 3 > x - 1$,	x be a real number get $(x+3)(x-1)it must be the condition of the distribution of the condition of the$	$(1) \le $ ase th	$\leq 0.$	So (x)	(+3)) and $(x-1)$	must h	ave op	posite	signs	. Since
Since $A \subseteq B$ a	$\operatorname{nd} B \subseteq A, A = B$	3.									
2. (4 points) Che	ck the (single) bo	x tha	t bes	st cha	racte	erizes each iter	n.				
Chromatic nur	nber of a graph v	vith	1	V	/	2	3		can'	t tell	

an upper bound on

a lower bound on

exactly

not a bound on

Brandon fit 14 buns into the

steamer basket. 14 is ____ how

many on how many buns the

basket can hold.