CS 173, Fall 2016 Examlet 8, Part B

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = c$$

$$F(n) = F(n/2) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$F(n) = F(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i}$$

Finish finding the closed form for F. Show your work and simplify your answer.

CS 173, Fa Examlet 8,		NE	TII) :							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
	pose we have a function terms of $g(n/2^2)$ find a closed for	g(1) $g(n)$) =) = here	c $4g($ $n \ge 8$	n/2)	$+d$ for $n \ge 2$		implify	your a	answe	er. You

 $2.\ (2\ \mathrm{points})$ Check the (single) box that best characterizes each item.

The number of edges in the		<u></u>	<u></u>		
4-dimensional hypercube Q_4	5	12	32	64	

CS 173 Examle	NETID:										
FIRST:			LAST:								
Discussio	on: Thursday	2	3 4	5	Frida	ay 9	10	11	12	1	2
. (8 points)	Suppose we have a	function	$f ext{ defi}$	ned by	,						
		f(1) $f(n)$		(n/2)	$+ n^2$ for	$n \ge 2$					
Express f do not ne	f(n) in terms of $f(n)end to find a closed for$	(2^3) (where for j	ere $n \ge f(n)$.	8). S	how you	ır work	and si	implify	your	answe	r. Yo

CS 173, Fall 2016 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function F defined (for n a power of 3) by

$$F(1) = 5$$

 $F(n) = 3F(n/3) + 7 \text{ for } n \ge 3$

Your partner has already figured out that

$$F(n) = 3^k F(n/3^k) + 7 \sum_{p=0}^{k-1} 3^p$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$

CS 173, Fall 2016 Examlet 8, Part B

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function g defined (for n a power of 4) by

$$g(1) = c$$

$$g(n) = 2g(n/4) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$g(n) = 2^k g(n/4^k) + n \sum_{p=0}^{k-1} \frac{1}{2^p}$$

Finish finding the closed form for f(n) assuming that n is a power of 4. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.

CS 173,	Fal	11	201	6
Examlet	8,	F	Part	\mathbf{B}

NETID:		

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(9) = 5$$

 $g(n) = 3g(n/3) + n \text{ for } n \ge 27$

Your partner has already figured out that

$$g(n) = 3^k g(n/3^k) + kn$$

Finish finding the closed form for g. Show your work and simplify your answer.

2. (2 points) Check the (single) box that best characterizes each item.

f(n) = n! can be defined recursively

by
$$f(0) = 1$$
, and $f(n+1) = (n+1)f(n)$ for all integers ...

$$n \ge 0$$

			Г
n	\geq	1	

$n \ge 2$	