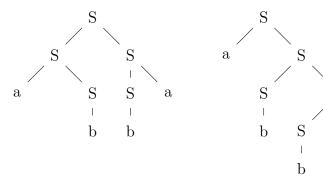
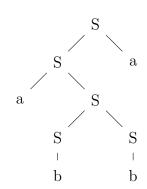
\mathbf{CS}	173,	Fal	11	201	6
Exa	\mathbf{mlet}	9,	F	Part	В

NETID:		


FIRST:	LAST:


Discussion: Thursday 3 Friday 9 **10** 11 **12** 1 $\mathbf{2}$ $\mathbf{2}$ 5 4

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string a b b a that match this grammar.

$$S \rightarrow SS \mid aS \mid Sa \mid b$$

Solution:

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n-1} 2^k$$

$$2^n + 1$$

$$2^n + 1 \qquad \qquad 2^n - 1 \qquad \qquad 2^n - 2$$

$$2^n-2$$

$$2^n$$

n edges

n-1 edges

 $\leq n$ edges

A tree with n nodes has

n/2 edges

 $\log n$ edges

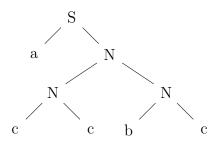
\mathbf{CS}	173,	Fal	11	201	6
Exa	\mathbf{mlet}	9,	F	Part	В

NETID:	

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9


1. (8 points) Consider the following grammar G

S is the only start symbol. The terminal symbol are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

$a\ c\ c\ b\ c$

Solution:

$a\ b\ c\ c\ c\ a$

Solution:

Impossible because this grammar can generate a's only at the start of the string, before all the b's and c's.

10

11

12

1

 $\mathbf{2}$

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{n+1} 2^k$$

$$2^{n+1} + 1$$

$$2^{n+2}-1 \quad \boxed{\checkmark}$$

$$2^{n+2}-2$$

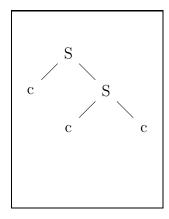
$$2^{n+1}-1$$

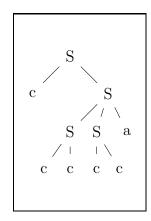
The root node of a tree is an internal node

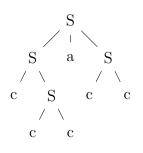
sometimes

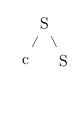
never

CS 173,	Fal	11	201	6
Examlet	9,	F	Part	\mathbf{B}


NETID:


ı		
	FIRST.	I ACT.
	rinoi:	LASI.


Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2


1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \ \rightarrow \ S S a \mid c S \mid c c$$

2. (4 points) Check the (single) box that best characterizes each item.

The mathematical symbol for an empty (zero-length) string

Ø

e

 ϵ $\sqrt{}$

NULL

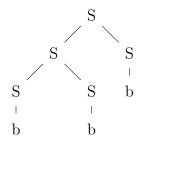
A binary tree of height h has at least $2^h - 1$ vertices (nodes).

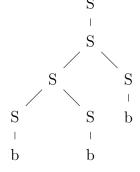
true

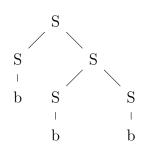
false

\mathbf{CS}	173,	Fal	11	201	6
Exa	\mathbf{mlet}	9,	F	Part	В

NETID:		


FIRST:	LAST:


Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2


1. (8 points) Here is a grammar with start symbol S and terminal symbol b. Draw three parse trees for the string b b b that match this grammar.

$$S \rightarrow SS \mid S \mid b$$

Solution:

h+1

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a full, complete tree of $\leq h$ height h.

2h $\leq 2h$ $\sqrt{}$

 $\sum_{k=1}^{n+1} 2^k \qquad \qquad 2^{n+1} + 1 \qquad \qquad 2^{n+2} - 1 \qquad \qquad 2^{n+2} - 2 \qquad \boxed{\checkmark} \qquad \qquad 2^n - 2 \qquad \boxed{}$

\mathbf{CS}	173,	Fal	ll 20 3	16
Exa	amlet	9,	Part	\mathbf{B}

NETID:

FIRST:

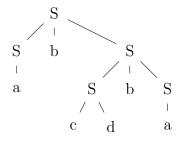
LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Consider the following grammar G

$$S \rightarrow S \ b \ S \ | \ a \ | \ c \ d$$

S is the only start symbol. The terminal symbols are a, b, c, and d.


Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

 $a \ a \ a \ c \ d$

Solution: In grammar G, making strings with more than two leaves requires using the first rule (SbS) which produces a b. This string can't be generated by G because it is more than two characters long with no b in it.

 $a \ b \ c \ d \ b \ a$

Solution:

2. (4 points) Check the (single) box that best characterizes each item.

The level of a leaf node in a tree of height h.

$$h-1$$

$$\leq h$$
 $\sqrt{}$

$$\sum_{k=0}^{n-1} 2^k$$

$$2^n-2$$

$$2^n-1$$

$$2^{n-1}-1$$

$$2^{n+1}-1$$

CS 173, Fall 2016 Examlet 9, Part B		NETID:										
FIRST:			LA	LAST:								
Discussion:	Thursday	2	3 4	1 5	Frid	ay 9	10	11	12	1	2	
1. (8 points) Cons	sider the follow	ing gr	ammar	G								
$S \to b S$	$a \mid b S b \mid c$											
S is the only star	rt symbol. The	term	inal syr	nbols a	a, b,	and c	•					
Here are two sequences have this selection leaf labels.				_					_			
b b c a b a b Solution: This is impossible. All strings produced by G have the (single) c in the exact middle of the string.				So	b a b c b b b Solution: This is impossible. In strings produced by G, all a's occur after the c.							
2. (4 points) Check	the (single) bo	ox tha	t best o	characte	erizes ea	ch ite	em.					
The number of p two distinct node tree. Paths in op directions count	es in an n -node posite		n $n(n -$	1) 🗸	<u>,</u>	n		$\frac{n(n-1)}{2}$				
The chromatic magnitude a full 3-ary tree	umber of	1		2 <	3]	≤ 2 can't	tell [√ 			