											1
CS 173, Fa Examlet 9,		NE	CTII	D:							
FIRST:					LA	ST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
1. (8 points) Here trees for the str	e is a grammar wring a b b a that					*	$\operatorname{nbols} a$	a and b	. Draw	thre	e parse
		S	\rightarrow	S S	' a	$S \mid S \mid b$					

2. (4 points) Check the (single) box that best characterizes each item.

$\sum_{k=1}^{n-1} 2^k$	$2^n + 1$	$2^{n} - 1$	2^n-2	2^n		
A tree with n n	odes has	n edges	n-1 edges		$\leq n$ edges	
A tree with n is	odes nas	n/2 edges	$\log n$ edges			

Examlet 9, Part B	NETID:	
FIRST:	LAST:	
Discussion: Thursday	2 3 4 5 Frida	ay 9 10 11 12 1 2
1. (8 points) Consider the follow	wing grammar G	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c
-	labels. For each sequence, either	and c . Her draw a tree from grammar G whose thy G cannot generate this sequence of
$a\ c\ c\ b\ c$	$a\;b\;c\;c\;c\;a$	
2. (4 points) Check the (single) b	oox that best characterizes each	h item.

sometimes

never

always

The root node of a tree is an

internal node

CS 173,	Fa.	11	201	6
Examlet	9,	F	Part	\mathbf{E}

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \rightarrow SSa \mid cS \mid cc$$

2. (4 points) Check the (single) box that best characterizes each item.

The mathematical symbol for an empty (zero-length) string Ø

e \square

 ϵ

NULL

A binary tree of height h has at least $2^h - 1$ vertices (nodes).

true

false

\mathbf{CS}	173,	Fa	11	201	6
Exa	ımlet	9,	F	Part	\mathbf{B}

NETID:	

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Here is a grammar with start symbol S and terminal symbol b. Draw three parse trees for the string b b b that match this grammar.

$$S \rightarrow S S \mid S \mid b$$

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a full, complete tree of $\leq h$ h h+1 height h. 2h $\leq 2h$

 $\sum_{k=0}^{n+1} 2^{k} \qquad \qquad 2^{n+1} + 1 \qquad \qquad 2^{n+2} - 1 \qquad \qquad 2^{n+2} - 2 \qquad \qquad 2^{n} - 2 \qquad$

CS 173, F Examlet 9		NE	ETII	D:								
FIRST:				LAST:								
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
$S \to S$ S is the only S Here are two S	consider the follow $b S \mid a \mid c d$ start symbol. The sequences of leaf latis sequence of lab	e term	ninal For	symb each	ols ai	nce, either	dra	w a tre		_		
$a\ a\ a\ c\ d$					a t	o c d b a						
 (4 points) Che The level of a in a tree of he 		ox tha	at be	st cha	ıracte	rizes each $h = -\frac{1}{2}$		i.	\leq	,]	h

 $2^{n}-1$ $2^{n-1}-1$ $2^{n+1}-1$

in a tree of height h.

CS 173, Fa Examlet 9		NE	TII):								
FIRST:				LAS	AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
S is the only so Here are two se	onsider the following $S \ a \ \ b \ S \ b \ \ c$ tart symbol. The equences of leaf last sequence of lab	term	inal s	symbeach s	ols are	ce, either	r drav			_		
$b\ b\ c\ a\ b\ a\ b$					b a	$b\ c\ b\ b$						
2. (4 points) Che	ck the (single) bo	ox tha	at bes	t cha	racter	izes each	item					
			n $n(n$	– 1)		$2n$ n^2		n	$\frac{(n-1)}{2}$			
The chromatic a full 3-ary tre			1		2 < 3	3		≤ 2 can't t	ell			