NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: $(2n)!^2 < (4n)!$ for all positive integers.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $(2n)!^2 = (2!)^2 = 2^2 = 4$ And (4n)! = 4! = 24.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $(2n)!^2 < (4n)!$ for n = 1, 2, ..., k.

Inductive Step: At n = k + 1, we have

$$(2(k+1))!^2 = (2k+2)!^2 = [(2k+2)(2k+1)(2k!)]^2 = (2k+2)(2k+2)(2k+1)(2k+1)(2k)!^2$$

Also $(4(k+1))! = (4k+4)! = (4k+4)(4k+3)(4k+2)(4k+1)(4k)!$

Also notice that (2k+2)(2k+1)(2k+1)(2k+1) < (4k+4)(4k+3)(4k+2)(4k+1) because each of the four terms on the left is smaller than the four terms on the right.

From the inductive hypothesis, we know that $(2k)!^2 < (4k)!$.

Putting this all together, we get

$$(2(k+1))!^{2} = (2k+2)(2k+2)(2k+1)(2k+1)(2k)!^{2}$$

$$< (2k+2)(2k+2)(2k+1)(2k+1)(4k)!$$

$$< (4k+4)(4k+3)(4k+2)(4k+1)(4k)!$$

$$= (4(k+1))!$$

So $(2(k+1))!^2 < (4(k+1))!$, which is what we needed to prove.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$.

Let x be a real number with x > -1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, $(1 + x)^n = (1 + x)^0 = 1$ and 1 + nx = 1 + 0 = 1. So $(1 + x)^n \ge 1 + nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1+x)^n \ge 1 + nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1+x)^k \ge 1 + kx$. Notice that (1+x) is positive since x > -1. So $(1+x)^{k+1} \ge (1+x)(1+kx)$.

But
$$(1+x)(1+kx) = 1 + x + kx + kx^2 = 1 + (1+k)x + kx^2$$
.

And $1 + (1+k)x + kx^2 \ge 1 + (1+k)x$ because kx^2 is non-negative.

So $(1+x)^{k+1} \ge (1+x)(1+kx) \ge 1+(1+k)x$, and therefore $(1+x)^{k+1} \ge 1+(1+k)x$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1$ Also $\sqrt{n} = 1$. So $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$ for n = 1, 2, ..., k, for some integer $k \ge 1$.

Inductive Step: $\sum_{n=1}^{k} \frac{1}{\sqrt{p}} \ge \sqrt{k}$ by the inductive hypothesis.

So

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{k+1}} + \sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \frac{1}{\sqrt{k+1}} + \sqrt{k} = \frac{1+\sqrt{k}\sqrt{k+1}}{\sqrt{k+1}} \ge \frac{1+\sqrt{k}\sqrt{k}}{\sqrt{k+1}} = \frac{1+k}{\sqrt{k+1}} = \sqrt{k+1}$$

So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \ge \sqrt{k+1}$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$.

Use (strong) induction to prove the following claim:

Claim: For every integer
$$n \ge 2$$
, $\prod_{p=1}^{n} \frac{2p-1}{2p} > \frac{1}{2\sqrt{n}}$

You may use the fact that $\sqrt{2} > 1.4$.

Solution:

Proof by induction on n.

Base Case(s): At n = 2, $\prod_{p=1}^{n} \frac{2p-1}{2p} = \frac{1}{2} \frac{3}{4} = \frac{3}{8}$ and $\frac{1}{2\sqrt{n}} = \frac{1}{2\sqrt{2}}$. Notice that $6\sqrt{2} > 6 \cdot 1.4 = 8.6 > 8$. So $\frac{6}{8} > 1 > \frac{1}{\sqrt{2}}$, and therefore $\frac{3}{8} > 1 > \frac{1}{2\sqrt{2}}$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n} \frac{2p-1}{2p} > \frac{1}{2\sqrt{n}}$ for n = 2, ..., k.

Inductive Step: [The following step is completely unmotivated. It was found by working backwards from the desired conclusion.] We know that $(2k+1)^2 = 4k^2 + 4k + 1 > 4k^2 + 4k = 2k(2k+2)$.

Taking the square root of both sides, we get $2k+1>\sqrt{2k}\sqrt{2k+2}$. Dividing both sides by 2k+2, we get $\frac{2k+1}{2k+2}>\frac{\sqrt{2k}}{\sqrt{2k+2}}=\frac{\sqrt{k}}{\sqrt{k+1}}$.

Now, consider $\prod_{p=1}^{k+1} \frac{2p-1}{2p}$. Using the inductive hypothesis, we have

$$\prod_{p=1}^{k+1} \frac{2p-1}{2p} = \frac{2k+1}{2k+2} (\prod_{p=1}^k \frac{2p-1}{2p}) > \frac{2k+1}{2k+2} \frac{1}{2\sqrt{k}}$$

But we know from the above that $\frac{2k+1}{2k+2}\frac{1}{2\sqrt{k}} > \frac{\sqrt{k}}{\sqrt{k+1}}\frac{1}{2\sqrt{k}} = \frac{1}{2\sqrt{k+1}}$

So $\prod_{p=1}^{k+1} \frac{2p-1}{2p} > \frac{1}{2\sqrt{k+1}}$ which is what we needed to prove.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Recall the following fact about real numbers

Triangle Inequality: For any real numbers x and y, $|x + y| \le |x| + |y|$.

Use this fact and (strong) induction to prove the following claim:

Claim: For any real numbers $x_1, x_2, ..., x_n \ (n \ge 2), \ |x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.

Solution:

Proof by induction on n.

Base Case(s): At n = 2, the claim is exactly the Triangle Inequality, which we're assuming to hold.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$ for any list of n real numbers x_1, x_2, \ldots, x_n , where $2 \le n \le k$.

Inductive Step: Let $x_1, x_2, \ldots, x_{k+1}$ be a list of k+1 real numbers.

Using the Triangle Inequality, we get

$$|x_1 + x_2 + \ldots + x_k + x_{k+1}| = |(x_1 + x_2 + \ldots + x_k) + x_{k+1}| \le |(x_1 + x_2 + \ldots + x_k)| + |x_{k+1}|$$

But, by the inductive hypothesis $|(x_1 + x_2 + \ldots + x_k)| + |x_{k+1}| \le |x_1| + |x_2| + \ldots + |x_k| \le |x_{k+1}|$.

Putting these two equations together, we get

$$|x_1 + x_2 + \ldots + x_k + x_{k+1}| = |(x_1 + x_2 + \ldots + x_k) + x_{k+1}| \le (|x_1| + |x_2| + \ldots + |x_k|) + |x_{k+1}|.$$

So $|x_1 + x_2 + \ldots + x_k + x_{k+1}| \le |x_1| + |x_2| + \ldots + |x_k| + |x_{k+1}|$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$, for any integer $n \ge 2$.

Solution:

Proof by induction on n.

Base Case(s): At n = 2, $\sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$, for n = 2, 3, ..., p.

Inductive Step: Substituing n = p + 1 into the summation and then using the inductive hypothesis, we get

$$\sum_{k=p+2}^{2p+2} \frac{1}{k} = \left(\sum_{k=p+1}^{2p} \frac{1}{k}\right) + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right)$$

Now, notice that $\frac{1}{2p+1} \ge \frac{1}{2} \frac{1}{p+1}$ and $\frac{1}{2p+2} = \frac{1}{2} \frac{1}{p+1}$. So $\frac{1}{2p+1} + \frac{1}{2p+2} \ge \frac{1}{p+1}$. Therefore $\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1} \ge 0$. Combining the results of the previous two paragraphs, we get

$$\sum_{k=n+2}^{2p+2} \frac{1}{k} \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12}$$

This is what we needed to show.