NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: $(2n)!^2 < (4n)!$ for all positive integers.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$.

Let x be a real number with x > -1.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

5

Discussion:

Thursday

3 4

Friday 9

10

11 12

1 2

(15 points) Use (strong) induction to prove the following claim:

 $\mathbf{2}$

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion:

Thursday

 $3 \quad 4$

 $\mathbf{2}$

5 Friday 9

10

11 12

1 2

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$.

Use (strong) induction to prove the following claim:

Claim: For every integer $n \ge 2$, $\prod_{p=1}^{n} \frac{2p-1}{2p} > \frac{1}{2\sqrt{n}}$

You may use the fact that $\sqrt{2} > 1.4$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Recall the following fact about real numbers

Triangle Inequality: For any real numbers x and y, $|x + y| \le |x| + |y|$.

Use this fact and (strong) induction to prove the following claim:

Claim: For any real numbers $x_1, x_2, ..., x_n \ (n \ge 2), |x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

5

Discussion:

Thursday

3 4

Friday 9

10

11 12

 $1 \quad 2$

(15 points) Use (strong) induction to prove the following claim:

 $\mathbf{2}$

Claim:
$$\sum_{k=n+1}^{2n} \frac{1}{k} \geq \frac{7}{12}$$
, for any integer $n \geq 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$