CS 173, Fall 2016 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Thursday

2 3 4

5 Friday 9

10

11 12

1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$T(8) = 5$$

$$T(n) = 3T(n-2) + c$$

- (a) The height: $\frac{n}{2} 4$
- (b) The number of nodes at level k: 3^k
- (c) Value in each node at level k: c

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

42n!

 7^n

 $100 \log n$

 $n\log(n^7)$

 2^{3n}

 $\log(2^n)$

 $(n^3)^7$

Solution:

$$100 \log n \ll \log(2^n) \ll n \log(n^7) \ll (n^3)^7 \ll 7^n \ll 2^{3n} \ll 42n!$$

CS 173, Fall 2016 Examlet 10, Part l	B NI	NETID:									
FIRST:					LAST:						
Discussion: Thursda	y 2	3	4	5	Frida	y 9	10	11	12	1	2
1. (7 points) In class, Prof. Streams to the reals whose outputs Is this true? Briefly justify y	out value	es are			_						
Solution:											
This is not true. Consider f case that $\log(f(x)) \ll \log(g(x))$		and g	(x) =	$=x^2$.	Then log	(g(x))	$=2 \log 1$	g(f(x))) So it	can't	be the
2. (8 points) Check the (single)) box tha	at bes	t cha	racte	rizes eac	h iten	1.				
T(1) = c T(n) = 2T(n/2) + n	$\Theta(\log n)$	n)		$\Theta(n)$		$\Theta(n \log n)$	g(n)	√ €	$\Theta(n^2)$		
T(1) = d T(n) = 2T(n/2) + c	$\Theta(n)$		$\Theta(r$	$n \log n$	n)	$\Theta(n^2)$	2)	$\Theta(2)$	\mathbb{Z}^n)		
n^{log_35} grows	fas	ter th] sl	ower t	than n^2	√ V			
Suppose $f(n)$ is $O(g(n))$. Will $g(n)$ be $O(f(n))$?			r	no []]	oerhap	ps v	/	yes		

CS 173, Fall 2 Examlet 10, I		NE'	ΓID):											
FIRST:						LAST:									
Discussion: The state of the st	nursday	2	3	4	5	Fri	day 9	10	11	12	1	2			
1. (7 points) Suppose means for f to be C Solution: There a	$\mathcal{O}(g)$. re positive r	eals c	and a	$k \mathrm{su}$	ch th	at 0 <u><</u>	$\leq f(x) \leq$	$\leq cg(x)$			-	what it			
2. (8 points) Check the $T(1) = d$	e (single) bo	x that	best	cha	racte	rizes	each ite	m.							
T(n) = a $T(n) = 3T(n/3) + c$	Θ	$(\log n)$)		$\Theta(n)$		$\Theta(n)$	$\log n$	∈	$\Theta(n^2)$					
T(1) = d $T(n) = 2T(n/2) + c$	Θ	(n)		$\Theta(r)$	$n \log n$	n)	$\Theta(t)$	n^2)	$\Theta(2)$	(2^n)					
2^n	O(n!)		Θ	(n!)] n	either o	f these							
n^{log_23} grows		faste	er tha	$n n^2$	2		slower	than n^2	2						
	at the	same 1	rate a	as n^2	2										

CS 173, Fall 2016 Examlet 10, Part B

NETID:

FIRST:

LAST:

5

Discussion:

Thursday

3 4

Friday 9

10

 $11 \quad 12$

1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7$$

$$T(n) = nT(n-2) + n$$

 $\mathbf{2}$

(a) The height: $\frac{n-1}{2}$

(b) The number of leaves: $n(n-2)(n-4)...5\cdot 3\cdot 1$

(c) Value in each node at level k: n-2k

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^n + 3^{31}$$

$$n^3$$

$$100n \log n$$

$$3^n$$

$$3\log(n^3)$$

$$7n! + 2$$

173n - 173

Solution:

$$3\log(n^3) \ll 173n - 173 \ll 100n\log n \ll n^3 \ll 2^n + 3^{31} \ll 3^n \ll 7n! + 2$$

CS 173, Fall 2016 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Thursday

3 $\mathbf{2}$ 4 5 Friday 9 **10**

11 12

2 1

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

$$T(1) = 7 T(n) = 2T\left(\frac{n}{4}\right) + n$$

- (a) The height: $\log_4(n)$
- (b) Number of leaves: $2^{\log_4 n} = n^{1/2} = \sqrt{n}$ [Ok to stop simplifying at $n^{1/2}$.]
- (c) Total work (sum of the nodes) at level k (please simplify): There are 2^k nodes at level k. Each of these nodes contains the value $n/4^k$. So the total work is $2^k \cdot n/4^k = n/2^k$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$n \qquad n\log(17n) \qquad \sqrt{n} + 18$$

$$\sqrt{n}+18$$

$$2^n$$

$$2^{\log_4 n} + 5^n$$

 $8n^2$ $2^n + n!$ $2^{\log_4 n} + 5^n$ $0.001n^3 + 3^n$

Solution:

$$\sqrt{n} + 18 \ll n \ll n \log(17n) \ll 8n^2 \ll 0.001n^3 + 3^n \ll 2^{\log_4 n} + 5^n \ll 2^n + n!$$

CS 173, Fa Examlet 10		NET	TID:								
FIRST:				LA	AST:						
Discussion:	Thursday	2	3 4	5	Friday	7 9	10	11	12	1	2
1. (7 points) Pro output values a your answer.	f. Flitwick claim re always > 1, if					_					
	is is not true. Cose that $\log(f(x))$			x and	g(x) = x	² . Th	ien log	(g(x))	$=2\log$	g(f(x))) So it
2. (8 points) Chec	ck the (single) bo	x that	best cha	aracte	erizes each	item					
T(1) = d $T(n) = 3T(n/3)$	Θ $+c$ Θ	(n)	√ Θ($n \log n$	n)	$\Theta(n^2)$)	$\Theta(2$	\mathbb{Z}^n)		
T(1) = d $T(n) = T(n/2)$	$+n$ Θ	$(\log n)$		$\Theta(n)$	√ Θ($(n \log$	(n)	Θ	(n^2)		
· ·	blem of size n in of size n/k , hatime when		oest	k < m $k > m$			n = m $n = 1$				
$n^{1.5}$ is	$\Theta(n^{1.41}$	14)		$O(n^{1.4})$	14)	n	either	of thes	se 🗸	/	