\mathbf{CS}	173,	Fall	2016	
Exa	amlet	10,	Part	\mathbf{B}

NETID:

FIRST:

LAST:

Discussion:

Thursday

3 4

5 Friday 9

10

11 12

1

 $\mathbf{2}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$T(8) = 5$$

$$T(n) = 3T(n-2) + c$$

 $\mathbf{2}$

(a) The height:

(b) The number of nodes at level k:

(c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

42n!

 7^r

 $100 \log n$

 $n\log(n^7)$

 2^{3n}

 $\log(2^n)$

 $(n^3)^7$

CS 173, Fa Examlet 1		NI	ETII	D:								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Friday	y 9	10	11	12	1	2
	class, Prof. Snalls whose outpuriefly justify yo	t value	es are			-				_		
2. (8 points) Chee	ck the (single) l	oox tha	at bes	st cha	racte	rizes each	item	1.				
T(1) = c $T(n) = 2T(n/2)$	(2) + n	$\Theta(\log i)$	n)		$\Theta(n)$	Θ	$n \log$	g(n)	e	$O(n^2)$		
T(1) = d $T(n) = 2T(n/2)$	(2) + c	$\Theta(n)$		$\Theta(n)$	$n \log r$	n)	$\Theta(n^2$)	$\Theta(2)$	$^{n})$		
n^{log_35} grows	at th	fas e same		$an n^2$ as n^2		slo	wer t	than n^2				
Suppose $f(n)$ is Will $g(n)$ be O				r	no [p	erhap	os		yes		

CS 173, Fa Examlet 10		NE	TII):								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Frie	day 9	10	11	12	1	2
1. (7 points) Sup means for f to		g are	funct	tions	from	the re	eals to th	ne reals	. Defir	ne prec	isely	what it
2. (8 points) Chec	k the (single) bo	x tha	t bes	t cha	ıracter	rizes e	ach iten	n.				
T(1) = d $T(n) = 3T(n/3)$	$)+c$ Θ	$(\log n)$	<i>y</i>)		$\Theta(n)$		$\Theta(n \log n)$	g n)	e	$O(n^2)$		
T(1) = d $T(n) = 2T(n/2)$	$)+c$ Θ	(n)		$\Theta(n$	$n \log n$)	$\Theta(n^2)$	2)	$\Theta(2$	n)		
2^n	O(n!)		Θ	O(n!)		ne	ither of	these				
n^{log_23} grows	at the			an n^2 as n^2			slower	than n^2				

\mathbf{CS}	173,	Fall	2016	
Exa	\mathbf{mlet}	10,	Part	\mathbf{B}

NETID:

FIRST:

LAST:

Discussion:

Thursday

 $3 \quad 4$

5 Friday 9

10

11 12

1

 $\mathbf{2}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7$$

$$T(n) = nT(n-2) + n$$

 $\mathbf{2}$

- (a) The height:
- (b) The number of leaves:
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^n + 3^{31}$$

$$n^3$$

$$100n \log n$$

$$3^r$$

$$3\log(n^3)$$

$$7n! + 2$$

$$173n - 173$$

	I	I		

CS 173,	Fall	2016	
Examlet	10,	Part	В

NETID:

FIRST:

LAST:

Discussion:

Thursday

3 4 **5** Friday 9

10

12 11

1

 $\mathbf{2}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

$$T(1) = 7$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n$$

 $\mathbf{2}$

- (a) The height:
- (b) Number of leaves:
- (c) Total work (sum of the nodes) at level k (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$n \qquad n \log($$

$$n\log(17n)$$
 $\sqrt{n}+18$

$$2^{n} + n!$$

$$2^{\log_4 n} + 5^n$$

 $8n^2$ $2^n + n!$ $2^{\log_4 n} + 5^n$ $0.001n^3 + 3^n$

FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

2. (8 points) Check the (single) box that best characterizes each item.

 $\Theta(n^{1.414})$

 $n^{1.5}$ is

 $O(n^{1.414})$

neither of these