CS 173, Fall 2016 NETID.
Examlet 11, Part A
FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

01 Shake(py,...,py : list of n 2D points, n > 3)

02 if (n = 3)

03 return the largest of d(p1, p2), d(p1,p3), and d(p2, ps3)
04 else

05 x = Shake(ps, p3, P4, - - -, Dn)

06 y = Shake(p1, p3, P4, - - -, Pn)

07 z = Shake(py, pa, ..., Dn1)

08 return max(x, y,z)

The function d(p, ¢) returns (in constant time) the straight-line distance between two points p and q.
Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (5 points) Suppose T'(n) is the running time of Shake on an input array of length n. Give a recursive
definition of T'(n).

Solution: T'(3) =c¢
T(n)=3T(n—1)+dn+ f

2. (4 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of
this tree?
Solution: At level k, there are 3* nodes and each node contains d(n — k) + f. So the total work
is 3%(dn — dk + f).

3. (3 points) How many leaves are in the recursion tree for 7'(n)?

Solution: 3773

4. (3 points) Is the running time of Shake O(2")?

Solution: No, the running time can’t be O(2"). The work in the leaves is ©(3") and 3" grows
faster than 2".

CS 173, Fall 2016

NETID:
Examlet 11, Part A

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1

01 Rattle(k,n) \\ inputs are natural numbers

02 if (n = 0) return 1

03 else if (n = 1) return k

04 else if (n is odd)

05 temp = Rattle(k,floor(n/2))
06 return k*temp*temp

07 else

08 temp = Rattle(k,floor(n/2))
09 return temp*temp

1. (5 points) Suppose T'(n) is the running time of Rattle. Give a recursive definition of 7'(n).
Solution: T(0)=T7(1)=c¢
T(n)=T(n/2)+d

2. (4 points) What is the height of the recursion tree for T'(n)?

Solution: log,n

3. (3 points) How many leaves are in the recursion tree for 7'(n)?

Solution: One.

4. (3 points) What is the big-Theta running time of Rattle?
Solution: ©(logn)

CS 173, Fall 2016 NETID.
Examlet 11, Part A
FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

01 Roll(ay,...,a,: a list of n positive integers)
02 if (n = 1) return a4

03 else if (n = 2) return max(ay, az)

04 elseif (ay < ay)

05 return Roll(as, ..., a,)

06 else

07 return Roll(aq, ..., a,-1)

Max takes constant time. Removing the last element of a list takes O(n) time.

1. (5 points) Let T'(n) be the running time of Roll. Give a recursive definition of 7'(n).
Solution: T(1)=c¢
T(2)=d
Tn)=T(n—-1)+pn
2. (3 points) What is the height of the recursion tree for T'(n)?
Solution: We hit the base case when n—k = 2, where k is the level. So the tree has height n — 2.

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?
Solution: Notice that the tree doesn’t branch, so there is only one node at each level. So the
total amount of work at level k is p(n — k).

4. (4 points) What is the big-theta running time of Roll?

Solution:
O(n?)

[Much more detail than you needed to give:] Notice that the sum of all the non-leaf nodes is
n—3
Z p(n—k). If we move the constant p out of the summation and substitute in the new index value

k=1
J=n—k, we get

n—1 n—1

.) n—1)n P P
pE JZPE J)—3=p%—3:§n2—§n—3
j=3 j=1

The dominant term of this is proportional to n?.

CS 173, Fall 2016 NETID.
Examlet 11, Part A
FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

01 Bounce(ay,...,a,) \\ input is a sorted list of n integers

02 if (n = 1) return a;

03 else

01 m = (2]

05 if a,, >0

06 return Bounce(ay, ..., a,) \\ O(n) time to extract half of list
07 else

08 return Bounce(am41,...,a,) \\ O(n) time to extract half of list

1. (5 points) Suppose that T°(n) is the running time of Bounce on an input list of length n and assume
that n is a power of 2. Give a recursive definition of 7'(n).

Solution:
T(l)=c
T(n)=T(n/2)+dn+ f

2. (4 points) What is the height of the recursion tree for T'(n)?

Solution: log,n

3. (3 points) What value is in each node at level k of this tree?

Solution: n/2F

4. (3 points) What is the big-Theta running time of Bounce?
Solution: ©(n)

[more detail than you need to supply] There is only one node at each level. So the total work is

. .. . logn ogn
c+d(n+n/2+...4+2). The dominant term of this is proportional to n >, 25 1/2F = n(2—1/2"8") =
n(2—1/n)=2n—1.

CS 173, Fall 2016 NETID.
Examlet 11, Part A
FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

01 Skip(ai,...,an;b1,...,b,) \\ input is 2 lists of n integers, n is a power of 2

02 if (n=1)

03 return a;b;

04 else

05 p=3

06 rv = Skip(as, ..., ap, by,...,bp)

07 rv = rv + Skip(ai, ..., @y, bpt1,...,by)
08 rv = v + SKip(api1, .-y Gy Opi1y -, 0p)
09 rv = v + Skip(apt1, ..., Gn, b1, .., by)
10 return rv

1. (5 points) Suppose that T'(n) is the running time of Skip on an input array of length n. Give a
recursive definition of 7'(n). Assume that dividing the list in half takes O(n) time.

Solution:
T(l)=c
T(n)=4T(n/2) +dn+ f

2. (4 points) What is the height of the recursion tree for 7'(n), assuming n is a power of 27

Solution: log,n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4% nodes, each containing f + dn/2*. So the total work is 4% f + 2¥dn

4. (3 points) How many leaves are in the recursion tree for 7'(n)? (Simplify your answer.)

Solution: 4log2 n _ 4log4 nlog24 _ nlog 24 _ n2

CS 173, Fall 2016 NETID.
Examlet 11, Part A
FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday9 10 11 12 1 2

01 Swing (aq, ..., a,: list of integers)

02 if(n=1)

03 if (a; is even) return true

04 else return false

05 else if (Swing(ay, ..., an—1) is true or Swing(as, ..., a,) is true)
05 return true

06 else return false
Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) If Swing returns true, what must be true of the values in the input list?

Solution: The input list contains at least one even value.

2. (5 points) Give a recursive definition for 7'(n), the running time of Swing on an input of length n.
Solution:
T(l)=c
Tn)=2T(n—1)+dn+ f

3. (3 points) What is the height of the recursion tree for T'(n)?

Solution: n—1

4. (4 points) How many leaves are in the recursion tree for 7'(n)?

Solution: 27!

