
1

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Shake(p1, . . . , pn : list of n 2D points, n ≥ 3)
02 if (n = 3)
03 return the largest of d(p1, p2), d(p1, p3), and d(p2, p3)
04 else
05 x = Shake(p2, p3, p4, . . . , pn)
06 y = Shake(p1, p3, p4, . . . , pn)
07 z = Shake(p1, p2, . . . , pn−1)
08 return max(x, y,z)

The function d(p, q) returns (in constant time) the straight-line distance between two points p and q.
Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (5 points) Suppose T (n) is the running time of Shake on an input array of length n. Give a recursive
definition of T (n).

Solution: T (3) = c

T (n) = 3T (n− 1) + dn+ f

2. (4 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of
this tree?

Solution: At level k, there are 3k nodes and each node contains d(n− k) + f . So the total work
is 3k(dn− dk + f).

3. (3 points) How many leaves are in the recursion tree for T (n)?

Solution: 3n−3

4. (3 points) Is the running time of Shake O(2n)?

Solution: No, the running time can’t be O(2n). The work in the leaves is Θ(3n) and 3n grows
faster than 2n.



2

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Rattle(k,n) \\ inputs are natural numbers
02 if (n = 0) return 1
03 else if (n = 1) return k
04 else if (n is odd)
05 temp = Rattle(k,floor(n/2))
06 return k*temp*temp
07 else
08 temp = Rattle(k,floor(n/2))
09 return temp*temp

1. (5 points) Suppose T (n) is the running time of Rattle. Give a recursive definition of T (n).

Solution: T (0) = T (1) = c

T (n) = T (n/2) + d

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) How many leaves are in the recursion tree for T (n)?

Solution: One.

4. (3 points) What is the big-Theta running time of Rattle?

Solution: Θ(log n)



3

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Roll(a1, . . . , an: a list of n positive integers)
02 if (n = 1) return a1
03 else if (n = 2) return max(a1, a2)
04 else if (a1 < an)
05 return Roll(a2, . . . , an)
06 else
07 return Roll(a1, . . . , an−1)

Max takes constant time. Removing the last element of a list takes O(n) time.

1. (5 points) Let T (n) be the running time of Roll. Give a recursive definition of T (n).

Solution: T (1) = c

T (2) = d

T (n) = T (n− 1) + pn

2. (3 points) What is the height of the recursion tree for T (n)?

Solution: We hit the base case when n−k = 2, where k is the level. So the tree has height n−2.

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: Notice that the tree doesn’t branch, so there is only one node at each level. So the
total amount of work at level k is p(n− k).

4. (4 points) What is the big-theta running time of Roll?

Solution:

Θ(n2)

[Much more detail than you needed to give:] Notice that the sum of all the non-leaf nodes is
n−3∑

k=1

p(n−k). If we move the constant p out of the summation and substitute in the new index value

j = n− k, we get

p
n−1∑

j=3

j = p
n−1∑

j=1

j)− 3 = p
(n− 1)n

2
− 3 =

p

2
n2 −

p

2
n− 3

The dominant term of this is proportional to n2.



4

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Bounce(a1, . . . , an) \\ input is a sorted list of n integers
02 if (n = 1) return a1
03 else
04 m = ⌊n

2
⌋

05 if am > 0
06 return Bounce(a1, . . . , am) \\ O(n) time to extract half of list
07 else
08 return Bounce(am+1, . . . , an) \\ O(n) time to extract half of list

1. (5 points) Suppose that T (n) is the running time of Bounce on an input list of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = T (n/2) + dn + f

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) What value is in each node at level k of this tree?

Solution: n/2k

4. (3 points) What is the big-Theta running time of Bounce?

Solution: Θ(n)

[more detail than you need to supply] There is only one node at each level. So the total work is
c+d(n+n/2+. . .+2). The dominant term of this is proportional to n

∑logn

k=0 1/2k = n(2−1/2log n) =
n(2− 1/n) = 2n− 1.



5

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Skip(a1, . . . , an; b1, . . . , bn) \\ input is 2 lists of n integers, n is a power of 2
02 if (n = 1)
03 return a1b1
04 else
05 p = n

2

06 rv = Skip(a1, . . . , ap, b1, . . . , bp)
07 rv = rv + Skip(a1, . . . , ap, bp+1, . . . , bn)
08 rv = rv + Skip(ap+1, . . . , an, bp+1, . . . , bn)
09 rv = rv + Skip(ap+1, . . . , an, b1, . . . , bp)
10 return rv

1. (5 points) Suppose that T (n) is the running time of Skip on an input array of length n. Give a
recursive definition of T (n). Assume that dividing the list in half takes O(n) time.

Solution:

T (1) = c

T (n) = 4T (n/2) + dn+ f

2. (4 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4k nodes, each containing f + dn/2k. So the total work is 4kf + 2kdn

4. (3 points) How many leaves are in the recursion tree for T (n)? (Simplify your answer.)

Solution: 4log2 n = 4log4 n log 24 = nlog 24 = n2



6

CS 173, Fall 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

01 Swing (a1, . . . , an: list of integers)
02 if (n = 1)
03 if (a1 is even) return true
04 else return false
05 else if (Swing(a1, . . . , an−1) is true or Swing(a2, . . . , an) is true)
05 return true
06 else return false

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) If Swing returns true, what must be true of the values in the input list?

Solution: The input list contains at least one even value.

2. (5 points) Give a recursive definition for T (n), the running time of Swing on an input of length n.

Solution:

T (1) = c

T (n) = 2T (n− 1) + dn+ f

3. (3 points) What is the height of the recursion tree for T (n)?

Solution: n− 1

4. (4 points) How many leaves are in the recursion tree for T (n)?

Solution: 2n−1


