CS 173, Fall 2016 Examlet 12, Part l	B	ΓID:							
FIRST:			LAST	:					
Discussion: Thursda	y 2	3 4	5 Fr	iday 9	10	11	12	1	2
(9 points) Let $f: \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$ Express a in terms of b and c . Bri				$\mathbb{Z}^+:n p\}.$	Suppose	e that	f(a) =	f(b)	$\cap f(c)$.
Solution: Every element of $f(a)$ must contain all numbers that $a = lcm(b, c)$.	- ' '				,				
(6 points) Check the (single) b	ox that be	est charac	eterizes ea	ach item.					
The number of ways to select a flowers chosen from 4 possible (zero or more of each variety).		(0)		$\binom{20}{4}$ $\binom{21}{4}$		$\binom{20}{3}$ $\frac{17!}{4!}$	$\sqrt{}$		
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -1 \square	0	1 \[\]	2		undefin	ed [
$\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(A \cup B)$	always	so	ometimes	$\sqrt{}$	never				

CS 173, Fall 2016 Examlet 12, Part B

NETID:

FIRST:

LAST:

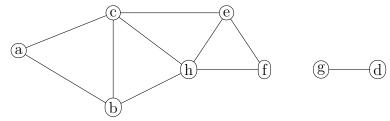
Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Graph G is at right.

V is the set of nodes.

E is the set of edges.

ab (or ba) is the edge between a and b.



Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$. (6 points) Fill in the following values:

|E| =Solution: 10

f(d) =Solution: $\{gd\}$

f(h) =Solution: $\{bh, ch, eh, fh\}$

(7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

Solution: T is not a partition of E. T does not contain the empty set (good) and each edge in E is in some member of T (good). However, each edge in E is in two members of T, so there is partial overlap among the members of T (bad).

(2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

Solution: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

CS 173, Fall 2016 Examlet 12, Part B NET	ΓID:							
FIRST:		LAST:						
Discussion: Thursday 2	3 4	5 Frid	ay 9	10	11	12	1	2
Let $f: \mathbb{Z}_{12} \to \mathbb{P}(\mathbb{Z}_{12})$ be defined by $f(x) = -1$	$\{y \in \mathbb{Z}_{12} \mid$	$y^2 = x\}.$						
Let $S = \{ f(x) \mid x \in \mathbb{Z}_{12} \}.$								
(6 points) Fill in the following values. brackets.)	(You can	n write elem	ents of	\mathbb{Z}_{12} as	plain	intege	ers, v	vithout
f(4) =								
Solution: $\{2, 4, 8, 10\}$								
f(7) =								
Solution: \emptyset								
S =								
Solution: $\{\{2,4,8,10\},\{0,6\},\{1,5,7,1\}\}$	1}, {3, 9},	\emptyset }						
(7 points) Is S a partition of \mathbb{Z}_{12} ? For each why S does or doesn't satisfy that condition		conditions re	equired 1	to be a	partiti	ion, br	iefly (explain
Solution: No. S covers all of \mathbb{Z}_{12} are because it contains the empty set.	ıd has no	partial over	rlap. H	[owever	, it ca	n't be	a pa	artition
(2 points) Check the (single) box that b	est charac	eterizes each	item.					
Let A be a non-empty set, $\{A\}$ is a partition of A .	alway	ys 🗸	somet	imes [neve	er [

FIRST:					LA	ST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
(9 points) Suppo $1 \cup C_B$ a partition							and C_1	$_B$ is a	partiti	on of	B.
Solution: No. Solution: No. Solution: No. Solution: No. Solution: A and $C_A = \{\{1\}\}$ erlap, so it can't be	$\{2,4\}\}$ is a pa	rtitio	n of .	<i>B</i> . B	Sut \hat{C}						
(6 points) Check	the (single) box	that	best o	chara	cteriz	zes each item.					

true

false

 $\{\{a,b\},c\}=\{a,b,c\}$

CS 173, Fall 2016 Examlet 12, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Suppose that $A = \{2, 3, 5, 13, 17\}$. Let's define a function $F : A \to \mathbb{P}(A)$ and a set S as follows:

$$F(x) = \{ y \in A \mid y \text{ is a factor of } x \}$$

$$S = \{ F(x) \mid x \in A \}$$

(6 points) Fill in the following values:

F(13) =Solution: 13

S =**Solution:** $\{\{2\}, \{3\}, \{5\}, \{13\}, \{17\}\}.$

(7 points) Is S a partition of A? For each of the conditions required to be a partition, briefly explain why S does or doesn't satisfy that condition.

Solution: Yes. S is a partition of A. Notice that $f(n) = \{n\}$ for all n in this particular set A. So element of A is in exactly one member of S and S cannot contain the empty set.

(2 points) State the binomial theorem.

Solution:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

CS 173, Fa Examlet 1		NET	TID:							
FIRST:				LAST	Γ:					
Discussion:	Thursday	y 2	3 4	5 F	riday 9	10	11	12	1	2
(9 points) Suppo $f(x) = m$. Then let your answer.										
Solution: $T(m)$ it belongs to exactly		_		-			-	ne ima	ige in	<i>B</i> . So
However, P will α	contain the em	pty set if	f is not	onto. So	P is a par	rtition i	f and o	only if	f is G	onto.
(6 points) Check	the (single) be	ox that be	st charac	eterizes e	each item.					
Pascal's identity that $\binom{n+1}{k}$ is equal		$\binom{n}{k+1} + \binom{n}{k+1}$		$\binom{n}{k}$ +	$\binom{n-1}{k}$] ($\binom{n}{k} + \binom{n}{k}$	$\binom{n}{-1}$	√	
Set B is a partitio set A . Then	n of a finite	$ B \le 2^{ A }$	k		$ B \le A $	$\sqrt{}$				
set A. Then		$ B = 2^{ A }$	L	$ B \le$	$\leq A+1 $					
The number of w			$\binom{17}{5}$		$\binom{20}{4}$		$\binom{20}{3}$			

(zero or more of each variety).

 $\begin{pmatrix} 17\\4 \end{pmatrix} \qquad \qquad \begin{pmatrix} 21\\4 \end{pmatrix} \qquad \qquad \qquad \frac{17!}{4!}$