FIRST:					LAST:								
Discussion:	Thursday	2	3 4	$oldsymbol{4}$	5	Frid	ay 9	1	0	11	12	1	2
(9 points) Let f :						$\in \mathbb{Z}^+$: n p	. Sup	pose	that	f(a) =	= f(b)	$\cap f(a)$
oress a in terms of	o and c . Brieny	Justily	your	ans	wer.								
(6 points) Check t	the (single) box	that be	est cha	aract	terizes	s each	item						
The number of wa	we to select a se	ot of 17		$\binom{17}{5}$			$\binom{20}{4}$,	$\binom{20}{3}$			
flowers chosen fro	om 4 possible		es						,				
(f_	ach variety).			$\binom{17}{4}$			$\binom{21}{4}$			$\frac{17!}{4!}$			
(zero or more of ea				(1)									
$\binom{0}{}$	-1 0				7	2			efine	_	—		

sometimes

never

always

CS 173, Fall 2016 Examlet 12, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Graph G is at right.

V is the set of nodes.

E is the set of edges.

ab (or ba) is the edge between a and b.

Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$. (6 points) Fill in the following values:

$$|E| =$$

$$f(d) =$$

$$f(h) =$$

(7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

CS 173, Fa Examlet 12		NETI	ID:								
FIRST:				LA	ST:						
Discussion:	Thursday	2 3	4	5	Friday	9	10	11	12	1	2
Let $f: \mathbb{Z}_{12} \to \mathbb{P}(\mathbb{Z}_{12})$	be defined by f	$(x) = \{y$	$\in \mathbb{Z}_{12}$	$ y^2 =$	$\{x\}.$						
Let $S = \{ f(x) \mid x \in \mathbb{Z} \}$	$\mathbb{Z}_{12}\}.$										
(6 points) Fill in brackets.)	the following va	alues. (You car	n wri	te elemen	ts of	\mathbb{Z}_{12} a	s plain	integ	ers, v	vithout
f(4) =											
f(7) =											
S =											
(7 points) Is S a pulse why S does or doesn't			of the	condi	tions requ	ired t	o be a	ı partit	ion, br	riefly	explain
(2 points) Check	the (single) box	that best	t chara	cteriz	es each ite	em.					
Let A be a non-eregal $\{A\}$ is a partition	- •		alwa	ys [SO	ometi	mes		neve	er [

FIRST:						LAST:								
Discussion:	Thursda	ay 2	2 3	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	5	Friday 9	10	11	12	1	2			
(9 points) Supp							and C_{E}	is a	partiti	on of	<i>B</i> . Is			
$\cup C_B$ a partition	Of $A \cup B$! B	гіепу д	usuny y	our ans	swer.									
(6 points) Check	the (single) l	oox tha	at best	charact	terize	es each item.								
There is a set A	such that			Ī										
$ \mathbb{P}(A) \le 2.$	saci ma	true)	fa	alse									
Pascal's identity that $\binom{n}{k}$ is equal		(m. 1)	(m 1)		,	$\binom{n-1}{k} + \binom{n-1}{k+1}$		(m	1) (m	2)				

CS 173, Fall 2016 Examlet 12, Part B

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Suppose that $A = \{2, 3, 5, 13, 17\}$. Let's define a function $F : A \to \mathbb{P}(A)$ and a set S as follows:

$$F(x) = \{ y \in A \mid y \text{ is a factor of } x \}$$

$$S = \{ F(x) \mid x \in A \}$$

(6 points) Fill in the following values:

$$F(13) =$$

S =

(7 points) Is S a partition of A? For each of the conditions required to be a partition, briefly explain why S does or doesn't satisfy that condition.

(2 points) State the binomial theorem.

Examlet 12	, Part B		ΓID:							
FIRST:	LA	ST:								
Discussion:	Thursday	2	3 4	5	Friday 9	10	11	12	1	2
(9 points) Suppose $(9 points) = m$. Then let ur answer.										
	1 (: 1) 1	.11	. 1		1					
(6 points) Check t	he (single) box	that b	est chara	cteriz	es each item.					
Pascal's identity		$+\binom{n}{k+1}$		$\binom{n}{k}$	$+\binom{n-1}{k}$	$\binom{\eta}{l}$	$\binom{n}{k} + \binom{n}{k-1}$			
that $\binom{n+1}{k}$ is equal	$\binom{k}{k}$	' (k+1)		(10)						

 $\binom{17}{4}$

 $\binom{21}{4}$

 $\frac{17!}{4!}$

The number of ways to select a set of 17 flowers chosen from 4 possible varieties

(zero or more of each variety).