CS 173, Fall 16 Examlet 13, Part A		NE	TID):							
FIRST:					LA	ST:					
Discussion:	Thursday	2	3	1	5	Friday 9	10	11	12	1	2

(15 points) Anne wants to model the "tunes" that her small brother is playing on his xylophone. He uses 5 notes: c, d, e, g, and a. She has observed that he plays one e, followed by one or more copies of gce or gcde, followed by one or two copies of a, followed by one or more copies of e. When he repeats gce/gcde, he switches between gce and gcde with no obvious pattern. Model this as a state diagram with one note on each edge, using no more than 11 states and, if you can, no more than 9.

Your state machine must be deterministic. That is, if you look at any state s and any action a, there is never more than one edge labelled a leaving state s.

CS 173, Fall 16 Examlet 13, Part B	NETII):					
FIRST:		\mathbf{L}	AST:				
Discussion: Thursday	2 3	4 5	Friday 9	10	11 12	1	2
(5 points) Let A be the set of answer.	all functions	s from {0	$\{1\}$ to \mathbb{N} . Is A	1 countab	ole? Briefly	justify	your
Solution: Yes, A is countable numbers: the image of 0 and the image					N as a pa	air of na	atural
(10 points) Check the (single) be	ox that best	character	rizes each item				
The interval [2, 3] of the real line.	nite	countal	oly infinite	un	ıcountable	$\sqrt{}$	
$f:A\to B$ is one-to-one if and only if $ A \le B $.	crue 🗸	false	true f	or finite s	sets		
The set of netIDs currently in use at U. Illinois.	finite $\sqrt{}$	coun	tably infinite		uncountab	le]
Every real number has a corresponding finite formula.	true		false $\sqrt{}$	not k	nown]	
The set of all finite lists of integers. fir	nite	countal	oly infinite	√ ur	ncountable		

CS 173, Fall 16 Review, Part A	NE	ETII	D :							
FIRST:				LAST:						
Discussion: Thursday	2	3	4	5	Friday 9	10	11	12	1	2
(5 points) Suppose that R is the $gcd(a,b) > 1$. Is R transitive? Inform that it is not.					_					owing
Solution:										
This relation is not transitive. $\gcd(2,3)=1$.	Consid	der 2,	, 6, a	nd 3.	Then $gcd(2,$	6) > 1	and g	$\gcd(6,3)$	3) >	1, but
(10 points) Check the (single) box	that	t best	chara	acteri	zes each item.					
Putting 10 people in the cance caused it to sink. 10 is ho many people the cance can carry.			upper ower b			exac not	etly a bour	nd on		
$\neg(p \to q) \equiv \neg p \to \neg q$		true	,]	false $\sqrt{}$					
$\{13, 14, 15\} \times \emptyset = \emptyset$	V	/	{Ø	}	{13,	14, 15}				
$7 \mid 0$ true $\boxed{\checkmark}$	fals	se _								
$f: \mathbb{N} \to \mathbb{N},$ $f(x) = 3 - x$ one-to-one			not	one-t	o-one	not	a funct	tion	$\sqrt{}$	

CS 173, Fall 16 Review, Part B	NETID:					
FIRST:		LAST:				
Discussion: Thursday	2 3 4	5 Friday	9 10	11 12	2 1	2
(5 points) Suppose that $ A = 3$ Briefly justify or show work.	and $ B = 2$.	How many onto	functions a	re there	from A	to B
Solution: It doesn't matter what and $B = \{4, 5\}$. Two elements of A mapping to the other output value. It two choices for which output value co	A must map to Γhere are three	the same output choices for which	t value, with element x	th the th	ird elen	nent s
(10 points) Check the (single) box	that best char	acterizes each ite	m.			
$\sum_{i=0}^{k-1} (k \cdot i + 2)$ $\frac{k^2(k-1)}{2} + \frac{k^2(k+1)}{2} + k^2(k+1)$	2k	$\frac{k(k+1)}{2} + 2(k-1)$ $\frac{k(k-1)}{2} + 2(k-1)$				
The number of edges in the 4-dimensional hypercube Q_4	5	12	32 🗸	64		
3^n is $\Theta(5^n)$	$O(5^n)$	√ neithe	r of these			
The level of the root node in a tree of height h . 0	1	h-1	h		h + 1	
The running time of Karatsuba's all is recursively defined by $T(1) = T(n) =$	= d and	$(n/2) + cn \qquad $ $(n/2) + cn \qquad $		(2) + cn $(2) + c$		