CS 173, Fa Examlet 13		NE	TII):							
FIRST:					LA	AST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2

(15 points) Anne wants to model the "tunes" that her small brother is playing on his xylophone. He uses 5 notes: c, d, e, g, and a. She has observed that he plays one e, followed by one or more copies of gce or gcde, followed by one or two copies of a, followed by one or more copies of e. When he repeats gce/gcde, he switches between gce and gcde with no obvious pattern. Model this as a state diagram with one note on each edge, using no more than 11 states and, if you can, no more than 9.

Your state machine must be deterministic. That is, if you look at any state s and any action a, there is never more than one edge labelled a leaving state s.

FIRST:										
				LAST	Γ:					
Discussion:	Thursday	y 2 3	4	5 F	riday 9	10	11	12	1	2
(5 points) Let A	1 be the set of	f all function	ns from	$\{0,1\}$	to \mathbb{N} . Is A	counta	able?	Briefly	justify	у
wer.										
(10 points) Check	k the (single) l	box that bes	st chara	acterizes	each item.					
TTl : 1 [0. 2	l -£41									
The interval $[2, 3]$	-	finite	cou	intably i	nfinite] u	ıncour	table		
real line.						_				
real line.										
$f:A\to B$ is on	ne-to-one if	true	fals	se	true fo	r finite	sets			
$f:A\to B$ is or	ne-to-one if	true	fals	se	true fo	r finite	sets			
$f: A \to B$ is or and only if $ A \le$	ne-to-one if $ B $.		¬			r finite				İ
real line. $f: A \to B$ is or and only if $ A \le$ The set of netID in use at U. Illino	ne-to-one if $ B $.	true	¬		true fo	r finite		untable)	
$f: A \to B$ is or and only if $ A \le$ The set of netID in use at U. Illino Every real number	ne-to-one if $ B $. Os currently ois.		¬			r finite		untable	e)	
$f: A \to B$ is or and only if $ A \le$ The set of netID in use at U. Illino	ne-to-one if $ B $. Os currently ois.		c		y infinite				e	
$f: A \to B$ is or and only if $ A \le$ The set of netID in use at U. Illino Every real number	ne-to-one if $ B $. So currently ois. er has a site formula.	finite	c	countably	y infinite		unco)	

CS 173, Fall 16 Review, Part A	NE	ETID:									
FIRST:				LA	ST:						
Discussion: Thursday	y 2	3 4	f 4	5	Friday	9	10	11	12	1	2
(5 points) Suppose that R is the $cd(a,b) > 1$. Is R transitive? Informat it is not.											ıowi
(10 points) Check the (single) h	oox that	best cl	nara	cteri	zes each it	em.					
Putting 10 people in the cacaused it to sink. 10 is many people the canoe can car.	how	an up					exac	etly a bour	nd on		
$\neg(p \to q) \equiv \neg p \to \neg q$		true			false						
$\{13,14,15\}\times\emptyset=$	Ø		{Ø}		{	13, 14	4, 15}				
7 0 true	false	е									
$f: \mathbb{N} \to \mathbb{N},$ f(x) = 3 - x one-to-o	one] n	not (one-t	o-one		not	a func	tion		

CS 173, Fa Review, Pa		NE	ETI	D:							
FIRST:					LA	ST:					
Discussion:	Thursday	2	3	4	5	Friday 9	10	11	12	1	2
(5 points) Suppo Briefly justify or show		and	B	= 2.	How	many onto fu	inctions	are th	nere fro	om A	. to <i>B</i> ?

(10 points) Check the (single) box that best characterizes each item.

The running time of Karatsuba's algorithm is recursively defined by T(1) = d and

T(n) =

$\sum_{i=0}^{k-1} (k \cdot i + 2)$	$\frac{k^2(k-1)}{2} + 2k$ $\frac{k^2(k+1)}{2} + 2k$		$\frac{k(k+1)}{2} + 2(k - \frac{k(k-1)}{2} + 2(k - k(k-1$, <u>—</u>		
The number of edges in 4-dimensional hypercube		5	12	32	64	
3^n is	$\Theta(5^n)$	$O(5^n)$	neith	er of these		
The level of the root not in a tree of height h .	de 0	1	h-1	\Box h		

 $2T(n/2) + cn \qquad 3T(n/2) + cn \qquad \Box$

 $4T(n/2) + cn \qquad \boxed{ \qquad } 4T(n/2) + c \qquad \boxed{ }$