CS 173, Fa Examlet 13		NE	TII):							
FIRST:					LA	AST:					
Discussion:	Thursday	$\overline{2}$	3	4	5	Friday 9	10	11	12	1	2

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 15 states and, if you can, no more than 13.

bring, string, box, sox ring, riiing, riiing, riiing, ... [i.e. at least one i between the r and the ng]

CS 173, Fall 16 Examlet 13, Part E	NI	ETID	•								
FIRST:				$\mathbf{L}\mathbf{A}$	ST:						
Discussion: Thursday	y 2	3	4	5	Friday	9	10	11	12	1	2
(5 points) Let's consider two to e.e. different. So we ignore size a countable or uncountable? Briefly	nd posi	ition/o	rient	ation							
(10 points) Check the (single) b	ox tha	t best o	chara	acteri	zes each i	tem.					
$\mathbb{P}(\mathbb{Q})$ has the same cardinality as the reals.	true		fa	alse		not k	nown				
All infinite sequences of emojis.	fin	ite		cou	ntably in	finite		unc	countal	ole [
There exist mathematical functions that cannot be computed by any C program.	tru	ie]	fals	e	no	t know	7n			
$\mathbb{Q}\times\{\pi,\sqrt{2}\}$	finite		с	ounta	ıbly infini	te		uncou	ntable]
If $f: A \to B$ is one-to one	A <	$_{ B }$ \lceil	\neg	<i>A</i>	> R		4	= B			

CS 173, Fall 16 Review, Part A	NE	NETID:									
FIRST:				LA	ST:						
Discussion: Thursday	2	3	4	5	Friday		10	11	12	1	2
(5 points) Is the cycle graph C_4	a subg	graph	of gr	aph .	K _{3,3} ? Bri	efly ji	astify y	our an	iswer.		
(10 points) Check the (single) box	v that	bost	chor	octori	zog oneh	itom					
(10 points) Check the (single) box	x mat	best	CHara	acteri	zes each	пеш.					
If $\sqrt{2}$ is rational, then -3 is positive.	true			false		unc	lefined				
If xRx is never true, then the relation R is	refl bot	lexive th			irreflex neither						
$\forall x \in \mathbb{R}$, if $\pi = 3$, then $x < 20$. (π is the familiar constant.)		true]	false		$\mathrm{und}\epsilon$	efined			
For any integers p and q , if $p \mid q$ th	en $p \le$	$\leq q$.	trı	ıe [false					
If a function from \mathbb{R} to \mathbb{R} is increate it must be one-to-one.	easing,	tru	_{1e} [false	. [7				

CS 173, Fall 16 Review, Part B	NET	TID:							
FIRST:			LAS	ST:					
Discussion: Thursday (5 points) $A = \{0, 2, 4, 6, 8, 10, 12, B = \{1, 4, 9, 16, 25, 36, 49,\}$, i.e. Give a specific formula for a biject	$,\ldots\}$, i.	e. the evt squares	ven nu	ing with 1	rting with		12	1 biject	2
(10 mainta) Charle tha (circula) have	- 414 1			h :4					
(10 points) Check the (single) box $\sum_{k=1}^{n-1} \frac{1}{2^k} \qquad 1 - (\frac{1}{2})^n \qquad \Box$						2 -	$-\left(\frac{1}{2}\right)^{n-1}$	1	
Chromatic number of C_n .	2		3	≤	3	≤ 4			
The number of ways to select a se flowers chosen from 4 possible (zero or more of each variety).		$\begin{pmatrix} 17 \\ 5 \end{pmatrix}$ es $\begin{pmatrix} 17 \\ 4 \end{pmatrix}$		$\begin{pmatrix} 20 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 21 \\ 4 \end{pmatrix}$		$\binom{20}{3}$ $\frac{17!}{4!}$			
The mathematical symbol for an empty (zero-length) string	Ø		е	ϵ		NUL	L		

false

true

not known

The Marker Making problem can be

solved in polynomial time.