| CS 173, Sp<br>Examlet 1 | oring 2010<br>, Part A | $^{3}$ N | ETII | D: |      |    |   |   |   |   |  |  |
|-------------------------|------------------------|----------|------|----|------|----|---|---|---|---|--|--|
| FIRST:                  |                        |          |      |    | LAS' | Γ: |   |   |   |   |  |  |
| Discussion:             | Monday                 | 9        | 10   | 11 | 12   | 1  | 2 | 3 | 4 | 5 |  |  |

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

There is a soup s such that s is tasty and s does not contain meat.

**Solution:** For every soup s, s is not tasty or s contains meat.

2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every jedi j, if j has a light saber and j is not sick, then j can defeat the Dark Side.

**Solution:** For every jedi j, if j cannot defeat the Dark Side. then j does not have a light saber or j is sick.

3. (5 points) Find all integer solutions to the equation  $2p^2 + 5p = 3$ . Show your work.

**Solution:** Since  $2p^2+5p=3$ ,  $2p^2+5p-3=0$ . Factoring the lefthand side, we get  $(p-\frac{1}{2})(2p+6)=0$ . So p must be either  $\frac{1}{2}$  or -3. But  $\frac{1}{2}$  is not an integer. So p=-3.

| CS 173, Sp<br>Examlet 1 | oring 2010<br>, Part A | $^{3}$ N | ETII | D: |      |    |   |   |   |   |  |  |
|-------------------------|------------------------|----------|------|----|------|----|---|---|---|---|--|--|
| FIRST:                  |                        |          |      |    | LAS' | Т: |   |   |   |   |  |  |
| Discussion:             | Monday                 | 9        | 10   | 11 | 12   | 1  | 2 | 3 | 4 | 5 |  |  |

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dog d, if d is a terrier, then d is not large and d is noisy.

**Solution:** For every dog d, if d is large or d is not noisy, then d is not a terrier.

2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every mountain m, if m is tall or m is not in the north, then m has a snow cap.

**Solution:** There is a mountain m, such that m is tall or m is not in the north, but m does not have a snow cap.

3. (5 points) Find all integer solutions to  $x^2 - 2x - 3 < 0$ . Show your work.

**Solution:** Factoring the lefthand side, we get (x+1)(x-3) < 0. Since x+1 is larger than x-3, this means that x+1>0 and x-3<0. So x>-1 and x<3. The only integers in this range are 0, 1, and 2.

CS 173, Spring 2016
Examlet 1, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every mountain m, if m is tall or m is not in the north, then m has a snow cap.

**Solution:** For every mountain m, if m does not have a snow cap, then m is not tall and m is in the north.

2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

There is a mushroom f such that f is not poisonous or f is blue.

**Solution:** For every mushroom f, f is poisonous and f is not blue.

3. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by G(x) = x - 2 and  $H(x) = \sqrt{2x + 1}$ , where the square root function returns only the positive root. Compute the value of H(G(G(8))), showing your work.

Solution: G(8) = 6

So G(G(8)) = 4

So  $H(G(G(8))) = \sqrt{2 \cdot 4 + 1} = \sqrt{9} = 3$ 

CS 173, Spring 2016

Examlet 1, Part A

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

## Solution:

$$(r \to q) \to r = r$$

| q | r | $r \rightarrow q$ | $(r \to q) \to r$ |
|---|---|-------------------|-------------------|
| Τ | Τ | Τ                 | Τ                 |
| Τ | F | Τ                 | F                 |
| F | Τ | F                 | Т                 |
| F | F | Τ                 | F                 |

2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every egg E, if E floats, then E is not good or the water has been salted.

**Solution:** For every egg E, if E is good and the water has not been salted, then E will not floats.

3. (5 points) Solve  $\frac{3}{7x} + a = \frac{b}{7}$  for x, expressing your answer as a single fraction. Show your work.

**Solution:** Multiplying everything by 7x, we get 3 + 7ax = bx.

So then bx - 7ax = 3. So x(b - 7a) = 3. So  $x = \frac{3}{b - 7a}$ .

CS 173, Spring 2016

Examlet 1, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

12

1 2

 $4 \quad 5$ 

3

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

11

For every jedi j, if j has a light saber and j is not sick, then j can defeat the Dark Side.

**Solution:** There is a jedi j, such that j has a light saber and j is not sick, but j cannot defeat the Dark Side.

2. (5 points) Solve 
$$\frac{2m^2 - m - 6}{m - 2} = 9$$
 for  $m$ .

**Solution:** Notice that  $2m^2 - m - 6 = (m-2)(2m+3)$ . So  $\frac{2m^2 - m - 6}{m-2} = 2m+3$ .

So our problem reduces to solving 2m + 3 = 9. That is, 2m = 6. So m = 3.

3. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

## **Solution:**

$$(p \to q) \land (p \to \neg q) = \neg p$$

| р | q | $p \rightarrow q$ | $p \to \neg q$ | $(p \to q) \land (p \to \neg q)$ |
|---|---|-------------------|----------------|----------------------------------|
| Τ | Τ | Т                 | F              | F                                |
| Т | F | F                 | Т              | F                                |
| F | Т | Т                 | Т              | Т                                |
| F | F | Т                 | Т              | T                                |