\mathbf{CS}	173,	Spring	2016	7
---------------	------	--------	------	---

Examlet 2, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

 $\mathbf{2}$

3

 $\mathbf{4}$

5

1. (5 points) Let a and b be integers, b > 0. We used two formulas to define the quotient q and the remainder r of a divided by b. One of these is a = bq + r. What is the other?

Solution: $0 \le r < b$

2. (6 points) Use the Euclidean algorithm to compute gcd(1183, 351). Show your work.

Solution:

$$1183 - 3 \times 351 = 1183 - 1053 = 130$$

$$351 - 2 \times 130 = 351 - 260 = 91$$

$$130 - 91 = 39$$

$$91 - 3 \times 39 = 91 - 78 = 13$$

$$39 - 3 \times 13 = 0$$

So the GCD is 13.

3. (4 points) Check the (single) box that best characterizes each item.

 $7 \equiv 5 \pmod{1}$

true

false

gcd(k,0)

0

 $\begin{bmatrix} 1 \end{bmatrix}_{\nu}$

undefined

	${ m CS}~173, { m Sp} \ { m Examlet}~2,$	•	6 $\overline{ m N}$	ETII	D :								
I	FIRST:					LAST:							
Ι	Discussion:	Monday	9	10	11	12	1	2	3	4	5		
1.	(5 points) Is the showing that it	_	m tru	ıe? Info	ormal	ly expla	in wl	hy it is	s false	e, or	give a	concrete e	xample
	There is an	n integer n such	h tha	t $n \equiv 5$	5 (mc	od 6) an	$d n \equiv$	≡ 6 (n	nod 7	·)?			
	Solution: Thi	s is true. Cons	sider	n = 41	. 41 =	≡ 5 (mo	d 6)	and 4	$1 \equiv 6$	6 (m	od 7).		
2.	(6 points) Writ Euclidean algori Solution: gcd(a,b)	-	`			,		functi	on go	ed(a,	b) tha	t impleme	nts the
	x=a $y=b$ while $(b > c)$ $c = c$	0) mainder(a,b)											
3.	(4 points) Check	k the (single) b	oox tl	hat bes	st cha	racterize	es ea	ch ite	m.				
	Two positive interprime if and only			latively		true [f	alse				
	$29 \equiv 2 \pmod{9}$	true	1	\checkmark	false								

CS 173, Spring 2016 Examlet 2, Part B NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $p \mid q$, then $s \equiv t \pmod{q}$.

Solution: This is false.

Informally, since q is larger than p, congruence mod q makes finer distinctions among numbers than p does.

More formally, consider s = 1, t = 4, p = 3 and q = 6. Then $3 \mid 6$ and s and t are congruent mod 3, but but s and t aren't congruent mod 6.

2. (6 points) Use the Euclidean algorithm to compute gcd(1609, 563). Show your work.

Solution:

$$1609 - 2 \times 563 = 1609 - 1126 = 483$$

$$563 - 483 = 80$$

$$483 - 6 \times 80 = 3$$

$$80 - 26 \times 3 = 80 - 78 = 2$$

$$3 - 2 = 1$$

$$2 - 2 \times 1 = 0$$

So the GCD is 1.

3. (4 points) Check the (single) box that best characterizes each item.

 $k \equiv -k \pmod{k}$

always

 $\sqrt{}$

sometimes

never

7 | 0

true

 $\sqrt{}$

false

CS 173, Spi Examlet 2,	O	NETID:				
FIRST:			LAST:			
Discussion:	Monday	9 10 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 3	4 5	
1. (5 points) Is the example showing	_		rmally explain	why it is,	or give a co	oncrete counter-
Claim: For	all natural nur	nbers $a, b,$ and	$c ext{ if } ac \mid bc, ext{ th}$	nen $a \mid b$.		
Solution: This it's not the case			= 3, and $c = 0$. Then ac	bc, because	e 0 0. However
2. (6 points) Use the	he Euclidean <i>θ</i>	lgorithm to co	ompute gcd(10:	12, 299). Sh	now your wo	rk.
Solution: 1012	$-3 \times 299 = 1$	012 - 897 = 1	15			
$299 - 2 \times 115 =$	299 - 230 = 69	9				
115 - 69 = 46						
69 - 46 = 23						
$46 - 2 \times 23 = 0$						
So $gcd(1012, 299)$)=23					
3. (4 points) Check	the (single) be	ox that best cl	naracterizes ea	ch item.		
For any integers p	o and q , if $p \mid q$	then $p \leq q$.	true	false	$\sqrt{}$	
$\gcd(0,0)$	0	k	undefined [$\sqrt{}$		

CS 173, Sp Examlet 2	•	NETI	D:							
FIRST:				LAST	Γ:					
Discussion:	Monday	9 10	11	12	1 2	3	4	5		
1. (5 points) Is to example showing	the following clarifier that it is not		Informa	ally exp	olain why	it is,	or gi	ve a co	ncrete cou	nter-
Claim: For $gcd(a, c) =$	or all positive in = 1.	ntegers a ,	b, and	c, if go	$\operatorname{ed}(a,bc)$	= 1, t	hen g	$\gcd(a,b)$	= 1 and	
	his is true. If go ors of b are a second second b									
2. (6 points) Use	the Euclidean	algorithm t	to comp	oute gco	1(1568, 54)	46). Sł	now y	our wor	k.	
Solution:										
$1568 - 546 \times 2$	=1568-1092	=476								
546 - 476 = 70										
$476 - 70 \times 6 =$	476 - 420 = 56	;								
70 - 56 = 14										
$56 - 14 \times 3 = 0$)									
So the GCD is	14.									
3. (4 points) Chec	ck the (single) b	ox that be	est chara	acterize	es each ite	em.				
$k \equiv -k \pmod{r}$	7)	always		some	etimes [$\sqrt{}$	ne	ver]	
-	umbers p , there mbers q such the		y tr	rue	√ f	alse				